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In this paper, we have presented an electromagnetic field analysis of shielded composite dielectric spheri-
cal shell resonator. The resonator studied in this work is considered for the first time as no study on such
resonators is available in the published literature to the best of the author’s information. This shielded
composite dielectric spherical shell resonator is composed of two concentric metal spheres with different
dielectric material has been made. The whole assembly is shielded by a perfectly conducting concentric
spherical metal. The expression for the resonant frequencies and quality factors have been calculated us-
ing numerical methods for both the TE,,and TM;;, modes for an infrared and visible regions. It is found
that as the outer radius of the shielded composite dielectric spherical shell resonator increases, the qual-
ity factor Q of the resonator increases monotonically. It is also found that if we change the radius of
the inner dielectric sphere, there is no appreciable change in resonant frequency of the concerned mode
is observed. This is due to the small difference in the permittivities of the materials of the inner and
the outer dielectric spheres. It has also been observed that an inner concentric superconducting sphere
within a dielectric spherical resonator is a more effective controlling parameter of the resonant frequency
than the other parameters.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, with the advent of new materials with both
permittivity and quality factor as well as low temperature coef-
ficient, a progressive effort in the miniaturization and stabiliza-
tion of components for applications in microwaves and milimeter
waves such as oscillators, dielectric loaded resonators, and filters
has been made [1-5]. Resonators are important components in mi-
crowave communication systems. These are used as filters, oscilla-
tors, amplifiers, and tuners. Fields inside a resonator store energy
at the resonant frequency where equal storage of electric and mag-
netic energies occurs [3-14].

Dielectric resonators (DRs) for millimeter wave frequencies de-
mand the use of very small dielectric devices. The manufacture of
these micro-resonators recommends the use of geometries such as
spheres or hemispheres which are easier to produce than rod or
ring shapes [4-10]. These kinds of dielectric samples can be in-
serted in to micro-strip structures to design passive circuits such as
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filters or to couple with active circuits to stabilize the resonant fre-
quency of oscillators [7,12-16]. When they work with azimuthally
high order modes of whispering gallery modes (WGM), they are
applied in the design of ultra stable oscillators and in the studies
of new dielectric materials [9-17].

Several approaches to analyze these DRs can be found in lit-
erature, such as the dielectric wave guide method [18], the radial
mode-matching method by kobayashi and Tanaka [19], or the ax-
ial mode-matching method by Zoki and Atia [20], as well as a
method based on the surface integral equation techniques [4] or
the asymptotic expansion method [21]. When the shape of the DR
is complex, a geometrically flexible numerical method such as fi-
nite element method (FEM) might be advantageous. Some formu-
lations based on finite elements have been applied to the study of
axisymmetric dielectric resonators in cavities like [23-26].

The effort to improve microwave resonator performance, as
measured by the device Q-factor, has caused an evolution to oc-
cur in the fundamental structure of the physical resonator [6,9,13].
Simple metal cavity resonators, where the enclosure wall losses
determine the achievable Q, were super ceded by dielectric loaded
cavities which attained higher Q’s by confining more of the field of
the resonant mode away from the lossy enclosure walls [17-26].
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Spherical cavity resonator is a spherical metallic cavity. Electro-
magnetic field analysis for such a resonator has been presented in
standard texts wherein resonant frequencies have been computed
for the microwave region of the electromagnetic spectrum [1-12].
Spherical cavity resonator may be filled with a dielectric medium
which becomes a shielded spherical dielectric resonator [8-11].

Dielectric resonators made of crystalline materials such as
quartz or sapphire with a high Q-factor and good temperature sta-
bility have also been considered. Studies on uniaxially anisotropic
dielectric resonators have been reported in literatures [2728],
where in only modes with no or a low order of azimuthal
variations have been considered. An attempt at describing these
anisotropic resonators operating at azimuthal higher order modes,
called whispering gallery modes (WGMs), has been made [26-40].

In some applications, or to compensate for the deviations as a
result of mechanical tolerances, tunable resonators might be re-
quired. Typical tuning elements are metallic screws, plates moving
toward dielectric resonator, or dielectric devices [4-23].

High-Q dielectric resonators have also been used as stabiliz-
ing devices for oscillators in microwave integrated circuits. Reso-
nant frequencies, field distributions and Q-factors for modes with
a no azimuthal variation (m=0), hybrid modes (m# 0), or even
modes with a high azimuthal variation (WGM) in dielectric res-
onators on microstrip substrates or supporters, and with or with-
out tuning devices, have to be efficiently obtained. For application
in microwave region reduction in the size of the dielectric res-
onators has focused the attention of the researchers toward new
shapes such as spherical or hemispherical resonators. A dielectric
sphere resonator on a substrate into a cylindrical conducting cav-
ity together with a conical resonator structure was studied [18],
where, the mode-matching method was used and these geometries
were simulated by bodies of revolution with stepped cross sec-
tions, where many steps and a modal convergence study is neces-
sary; furthermore, resonant frequencies of hybrid modes and qual-
ity factors were not computed.

Spherical resonators operating in WGMs achieve high quality-
factor values and can be used to stabilize integrated oscillators.
As a consequence of spherical symmetry, a spherical resonator
has a large spherical density of WGMs which is not appropriate
for a single-mode operation. Furthermore, the spherical shape can
be mechanically unstable. Hemispherical resonators have a lower
spectral density though their unloaded Q-factor becomes a little
smaller. An image hemispherical dielectric resonator with WGM,
used as an oscillator system for millimeter devices, has been in-
vestigated by Kharkovsky et al. [36]. The hemispherical DR is also
used to design dielectric-resonator antennas (DRAs) as an alter-
native to microstrip antennas [32-41] has studied cylindrical and
spherical dielectric resonators in cavities and microwave integrated
circuits, using finite elements method.

In the present paper, we have theoretically analyzed the normal
modes and quality factors for composite shielded dielectric spher-
ical shell resonator with a concentric metallic sphere at the centre
in infrared and visible regions. In the earlier published literature
[8-26,33-40], computation of these factors parameters for compos-
ite shielded dielectric spherical shell resonator with a concentric
metallic sphere has not been explored in details. The resonant fre-
quencies and quality factors have been calculated using analytical
expressions for both the TE,m,and TMp;,, modes in an infrared and
visible regions.

Fig. 1. Shielded composite dielectric spherical shell resonator with a metallic
sphere of radius a at the centre and enclosed in a metallic spherical shell of larger
radius c.

2. Theoretical description
2.1. Field equation and characteristic equations

A shielded composite dielectric spherical shell resonator with
a metallic sphere studied presently is shown in Fig. 1. A perfectly
conducting metallic sphere of radius 4 is concentrically surrounded
by a dielectric sphere of radius b and permittivity € ; which in
turn is surrounded by another concentric dielectric sphere of ra-
dius ¢ and permittivity € ,. The whole assembly is shielded by a
perfectly conducting concentric spherical metal case of radius c.
The materials of the two dielectric spheres are non-magnetic, i.e.
U1 =o=My. Now the resonator consists of two regions, one in
the region a < r < b and the other in the region b < r < c.

The solution of the radial part of the wave equation in the two
dielectric spheres [8-26,36-41] is given by

X(r) :A}']H%(kjr)+Ban+%(kjr) (1)

with j=1 for region a < r < b and j=1 for region b < r <

c where, (/@?ocoer)r = (W /o€ger)T = (£ /€)r = kr, k is the

— 1 ioht i -
wave number, ¢ = Thges S the speed of light in vacuum, k; =

© V& =koyeEn and ky = ¢/€x = ko/Erz where ¢ = 1 is the
speed of light in vacuum, PJ'(cos@) [Appendix-B, Eqs. (B10) and
(B11)] is called associated Legendre polynomial of the first kind,
],H%(kr) and YH%(kr) are the Bessel function of the first kind

and second kind of order (n+%) respectively. Since, YHl(kr)
2

(Appendix-C) has infinite value at r=0, any linear combination of
Jo 1 (kr) and Y, ; (kr) also has finite value at r=0. But at r=0 the
2 2

field vectors have finite values, and Ajand B; are constants and e
rnand € pare the dielectric constants of the inner and outer di-
electric spheres. Therefore, excepting a normalization constant for
the product of P"(cos#) and cos m ¢, the solutions of the wave-

equations in the two regions[1-8, 36-41] are given by,
(0, ¢) = {AJJH% (kjT) + BjYH% (k;r)}Py" (cos® ) cos m¢p (2)

where j=1 for region a < r < b and j=2 for region b < r < ¢
(Appendix-A1).

This expression for ¥ (r, 6, ¢) from Eq. (2) one can be used to
find out the expressions for the field components for the TEyy, and
the TMpm, modes separately [1-8,36-40].

Following the procedures adopted in earlier [38-41] the field
expression for the TEym, and the TMpy,, modes have been deter-
mined and are collected in Sections 2.1.1 and 2.1.2.
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2.1.1. Field expressions for the TEnm, modes

E-=0
Ey = %0 aing (ATns 1 (ki) +ByY 1 (k; r)}Pm(cose) (em?)

g = B A, () + B, () ) (P (costjeme
He = MDA (kiT) + ByY,,, 1 (k) JPR (cos 0)elm?

o

Hp = - 11<j drf{( it (k;r) +B; Yol (k]r)}de{Pm(cos 0)}eime
H, = R/F%df[{( sy (K7) +BiY, (k]r))}Pm(cose) (eim?)

where i = +/—1, j=1 for inner dielectric spherical region (a < r < b) and j=2 for dielectric spherical region (b < r < c).

2.1.2. Field expression for the TEpm, modes

E = “r% {Aoy 1 (kjT) + BjY,, 1 (ki) }PR (cos 0)elme |
Ey=- lk,. SVHATL 3 (1) +ByY, 1 (kjr)} 5 (P (cos0)}eim?
Ey= TIW o %ﬁ{Ajjw% (kjr) +B;Y,, 3 (k;r)}PR (cos 0)% (eim®)
Hy =

Hy = j,m’]’; {Al 1 (k1) + ByY,,, s (k;r)}PR (cos 6) & (e™?)

Hy = — m:/el‘z? {AjJM% (kjT) +BjYp, 1 (ki) } & (P (cos 0)}elm?

where j=1 for inner dielectric spherical region (a < r < b) and j=2 for dielectric spherical region (b < r < c).
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(3)

(4)

In order to derive the characteristic equations for the TEnn, modes boundary conditions that the tangential components of E
(Eg and E,) must vanish for all & and ¢ on metal surfaces i.e. at r=a and r=c, and the tangential components of E and H are con-

tinuous at r=>b are used. Applying these conditions one gets from Eq. (3) the following relations,

WrgV =0
where
JM%(kla) Yn+%(k1a) 0 0
0 0 Jn+%(kzc) nJr1 (sz)

Wie = | Fichhey (ab) f Yooy (ab) =l (ab) - } a1 (kab)

ﬁjf”% (k1b) \/» n+1 (kib) —ﬁ{lﬂ% (kab) JE{J ns 3 (kab)
+2bk1_]/n+% (k] b) +2bk1 nt+l (klb) +2bk2_]/n+% (kzb)} +2bk2_]/n+% (kzb)}

and
= (A1, B1, Az, By)'
In order to satisfy Eq. (5) simultaneously determinant of the coefficients must vanish, i.e.

det WTE =0

Eq. (8) represents the characteristic equation for the TE;;, modes and on simplification it reduces to,

Yoii (kla)jnj% (kib){J, 3 (k2D) Yy 1 (K2€) —Jop 1 (k20)Y, 1 (kab)}
Hhiy ()Y, (kib) gy (ka©)Yy g (kab) =iy (Ka)Y,, ) (ko))
oy (Kib)Y, o (ke a){J,H% (sz)YnJr% (kab) =Y, s (’<2C)Jn+% (k2b)}
Hns1 ki)Y 1 (kib) {Yn+% (ka1 (kab) = Jo 1 (k20) Yy, (kzb)} =0
where

Jnis (kib) =J;, 1 (kab) + 2bKe)', 1 (keb)

JJ"'% (kob) = Jn+% (kyb) + 2b1(2j/n+% (kyb)

XIH'% (k] b) = Yn+% (klb) + 2bk]Y/n+% (klb)

Yn+% (kzb) = Yn+% (kzb) + Zbsz/nJr% (kzb)

S |
=1

Similarly, applying the boundary conditions at r=a, r=>b and r=cand using Eq. (4) one has,

WiV =0

(5)

(6)

(9)

(10)

(11)
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where,
]H% (kia) Ym% (kya) 0 0
+Zaklj’n+% (kia) +Zak1Y’n+% (kya)
0 0 Jns1 (k20) Yo (ka0)
Wy, = ; ; +2(;lr<2]/n+% (kyc) +2c€lr<2Y/n+% (ko) (12)
T};JM% (k1b) T;ZY.H% (k1b) —T;{;JM% (k2b) - T;TZY“J’% (k2b)
W{Jm% (k1b) ﬁ{YM%(/ﬂ b) —ﬁ{]m% (k2b) —ﬁ{YM%(kzb)
+2bl<1j/n+% (k1b)} +2bk1Y’n+% (k1b)} +2k2b]/n+% (kob)} +21<2bY/n+% (kab)}
And
V = (A1, B1, A2, By)" (13)

From Eq. (11) we get the determinantal form of the characteristic equation for the TMym, modes as,
detWf; =0 (14)
After simplification Eq. (14) has the following form:

Youy ()Y, (a0 { € Sy (ab)yey (kib) = € Joy (i) (kab) |

ey (1@l (0 [ €5 Yooy (ab) ¥y (D) = € Yy (DY, (ab)}

. - . _ (15)
sy (60, (o) [ €] Y,y (b, (o) € 1,y (e, (ib) )
+jn+% (sz)YM% (kia) {Gq Josl (’ﬁb)?m% (kab)— € Yy i1 (kzb)jm% (kq b)} =0
where
1‘”% (k@) =], 1 (ki) + 2ake)' 1 (Ky @)
Jna1 (ka0) =Ji 1 (ka0) + 2¢ka]' 1 (ko) (16)

7n+% (k1a) =Y, 1 (kia) +2aki Y’y 1 (K1a)
YrH% (sz) = Yn+% (sz) + 2C1(2Y/n+% (sz)

2.2. Energy, losses and quality factors

2.2.1. Energy
The energy W stored in the dielectric sphere is given by [22,23,41],

\" \

Here W is the sum of the energies Wy, stored in the inner dielectric sphere a < r < b and W5, stored in the outer dielectric sphere b
<r<ec
For the TE,;, modes

1 2 T b_‘ .
WE = Jeo ] / / / E. E*r2sind dr d6 dg (18)
0 0 a

Where, the value of index j changes from 1 to 2.
For the TE;o, modes

E =0

£ = 0} (19)
Ey = — 9o (A [5o(kiT) +B: Y3,0(kir)} sind

¢ Nk /230 J 137238 (20)

2,2 .
E¢ . EZ = %{Aj _]3/2 (kjr) + BJ Y3/2 (l(jr)}z sin?6
where index j=1 for TE;p, modes in the region a < r < b and index j=2 for TE;o, modes in the region b < r < c.
From Egs. (18) and (19) one gets for the region a < r < b as,
AT w?pdeo €

b
W = 20905 [P atar) + BiYaa(an)’ dr (21)
a

Using the results of integrals involving Bessel’s functions Eq. (21) gives,
WIE = w?ul o €] [APP{jT (kir) — jo(kit) j2 (Kir)} + By2r3{yf (kir) — yo(kir) ya(kir)}
+A1Bir2{2y1 (ki1) 1 (kit) — Yo (kiT) jo (KiT) — yo (KqT) Jo(ker)} 2 (22)
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From Eqs. (19) and (20) one gets for the region b < r < c as,
AT w? ey € €
WEE] = #/l; I'{Az J3/2(k21’) + Bz Y3/2(k2r)}2 dr (23)
which on further simplification reduces to,

4 . . . .
W = g geo €5 AP {ji (kar) — jo(kat)jz (Kar)} + By (kar) — Yo (kar)ya (kar)} + ABor* {2y (Kar)ji (kar)

—yo(kar)j2 (kar) — Y2 (kor)jo (ko) }j (24)
The expressions of energy stored in the dielectric spheres for the TE,g, and TE3g, modes are determined similarly and are given as,

12 . . .
Wi = ngﬂgeo el AP {3 (kar) = (kar) s (kar) } + B {y3 (kar) — ya (kar) ya (kar) }
, . . b
+A1B1 1 (2y2 (kin)ja (kir) — yi (kar) Js(kar) =y (kar) ja (ki) ] (25)
12 . . . .
WIS = £’ 1f <o € (A" {5 (kar) — i (ko) (Kar)} + Bor* {y3 (Kar) — v (kar) v (Kor)} + AsBur® {2y (kar)ja (kar)
=y1(kar) j3(kar) — y3(kar)ji (kar)} (26)

24 . . . .
Wi = 7602M(2) co € [P {3 (kir) — ja(kiDja (ki) } + Bi’r*{y5 (kir) — ya (Kr)ya(ker)} + AqBy (23 (kir) 3 (ker)
—ya(kinja (ki) — ya(kir)jz (k) } (27)

24 . . . .
WIE = Z?ud e &) [AP{iE(kor) — o (kar) ja(kor)} + B1?r*{yj (kar) — ya(kar) ya(kar)} + AiB1{2ys (kar) j3 (kar)

7
—y2(kar) ja(kar) — ya(kar) ja(kar)}y (28)
where By, A, and B, used for the TE,n, modes Eqs. (22), ((25)-(28)) are determined in terms of A; using Eqs. (5)-(7) as,
Jn(kia)
Bi= — A 29
T (k) (29)

€% Yn (k20 {jn (k1b)yn (k1a) — ju(k1a)yn(kib)}

Ay = — - - 30
2= T e a0 ya(abin(k20) —ja(kob)ya (0] G0
B, — €5 jn(k20){jn(k1b)yn(k1a) — jn(k1a)yn(k1b)} 1 (31)
€} Yn(k1a){yn (kab)jn (k2€) — jn (k2b)yn (k20)}
Similarly, the expressions for energy WJTII\I" stored in the dielectric spheres for the TM;n, modes are determined as follows,
1 2w T b Lo
WM — ,MO/ / / H.H*r2sing dr d do (32)
' 2 0 0 a
1 2w T c
WM — 7%/ / / H.Hrsing dr o dé (33)
P20 Joo Db
For the TM9, modes
H- =0
Hy=0
H¢ = % {Aj]3/2 (kjr) + BjY3/2 (l(jl') }Siﬂ@ (34)
)
2¢2(er)? 2 .
H¢ . H;ﬁ = © e(l)(j(rej) {Aj_]3/2 (kjr) -+ BjY3/2 (k]r)} Sln29
where index j=1 for TM;5, modes in the region a < r < b and index j=2 for TM;5, modes in the region b < r < c.
From Eqs. (32) and (34) one gets for j=1 in the region a < r < b as,
4w’ g €2 (€} 2 b
W?‘f = 31(10(1)/ 1{A1J32 (k1) + B1Y3/2 (kg r)}zdr (35)
d

which becomes,
4 . . . .
W = 310 € () [AP i (kar) —jo (a2 (kin)} +Ba*r*{y; (kar) = yo(ki)ya (kin)} + AiBir {24 (kir)ya (kar)
=Yo(kin)jz (ki) = y2 (kin)jo (ki 1)} 3 (36)
Hence, using Eqs. (33) and (34) one gets for j=2 in the region b < r < c as,

A w? o €} (eg)z

™ __
W2’1 - 31(2

fb F{Aals (kar) + ByYs 2 (kar) 2 dr (37)
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The above equation is simplified to,

4 . . . .
W = g0 €5 (€5)’[A2’P{j] (kar) — o (kan)ja (Kar)} + Bor*{y7 (Kar) — Yo (kar)y1 (Kat)} + AxBor® {21 (kar)yi (Kar)
=Yo (kar)ja (kar) — Y2 (ka1)jo (kar)}]2 (38)

The expressions for energy stored in TM5q, and TM3p, modes are determined by similar procedure and these are given below:

12 : . . . .
WIS = T’ po § (€)' [AP i (kir) — ji (kinjs (an)} + B {y; (ar) —yi (kinys (kin} + AiBar? (2 (kin)ja (ki)

—y1(kin)js (ki) — y3(ki0)ji (k1) }1] (39)

12 . . . .
WIY = T po & (5)" (A’ {j3 (kar) — ji (kar)j3 (lor)} + By (lar) — v (Kar)ys (kar)} + AcBar® {2y (kar)jz (Kar)

—y1(kor)jz (kar) — y3(kar)js (kar)} 15 (40)

24 . . . .
WY = Z 0’1o & (€D [AP {5 ar) —j2(kinja(kin} + By’ r{y3 (kir) — ya (kin)ya(kar)} + ABar (2ys (kin)js (kir)

~y2(KiDja(kir) — ya(kir)ja (ki) 315 (41)

24 . . . .
WY = 0’1o & (€5)° (AP {5 (ko) — ja (kar)ja (kar)} 4 By’ {5 (Kar) — ya (kar)ya (kar)} + AtBar® 2y (kar)js (kar)
—y2(kar)ja(kar) — ya(kor)jo (ko) } (42)

where the constants By, A, and B, used for the TMp;, modes (Eqs. 41, 44-48) are determined in terms of A; using Eqs. (14) as,

_ ya(kia) +akyy', (kia)
b= " Gtk + aki e (43)
4y = — &1 Wn(ka©) 4 kacy'y (kaO)}in (k1b) lin (k1) + K16f'n (k10)} = yn(K1b){yn(k1a) + k1ay'y (kia)}] (44)

€0 {in(k1a) + Kyaj'y (k1) [jn (kaD) {yn (k2C) + Ky (k20)} — Y (kab) (i (ka€) + KaCin (kaO)}] '

€] {in(k2€) + kaCjn (k20)}[jn (k1b) {jn (k1@) + kq1aj’, (k1@)} — yn (k1b){yn (k1a) + Kjay', (k1a)}]

By=—+ - : : - 45
2= 2 Tn(ka) + k0] n (k1) i (k2B) [ (k2) + Ka€yn (ka0)] — Yo (o) (i (k) + o n (a1 ] (42)
where j';, and y’;, are first derivatives of j, and ynrespectively [1-15,38-41].
2.3. Losses
Here the power loss P of the system is given by,
P =Py + l)d (46)

where Py, is the sum of metallic losses on the inner and the outer metal sphere surfaces and Py is the sum of the dielectric losses due to
finite conductivities of the dielectric spheres [1-15,36-41].

The metal loss is calculated assuming that the inner metal sphere and the shield are of same material [1-15].
Pr = %Rs // H. A*ds (47)

metallic surfaces (r=a,c)

The loss Py in the dielectric spheres is calculated by,

Pd:%od /f/ E.Edv (48)

dielectric volume

where right hand side of Eq. (48) is evaluated for the two spheres (dielectric) separately [1-8,36-41].

2.3.1. Metallic losses for the TE modes
For the TE;p, mode

H =0
Hy =0

H9 = —ﬁ % {ﬁ(AjJ3/2 (kj] r) + BjY3/2 (k]r)) }sin@ (49)
Hy -H; = znﬁ{Ajj’](kjr) + Bjy’l(kjr)}zsinzé’

where index j=1 for TE;p, modes in the region a < r < b and index j=2 for TE;o, modes in the region b < r < c.
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Using Egs. (47) and (49) we get metallic loss on spherical metal surface r=a for j=1 in the regiona < r < b as,

R;k?
PO, = ;‘1/ [Adf'y (kir) + By (ki) sin®0 6 do (50)
r=a
which is simpliﬁed to,
w
P 3 MO 1a?{Aijy (ki) + Byy'y (kla)} (51)
Using Eqs. (47) and (51) we get metallic loss on spherical metal surface r=c, for j=2 in the region b < r < c as,
c Rsl(% i / 2 2003
R / {Aai'1 (kar) + Bay'; (ko) } '2sin’0 d6 dep (52)
or
8 /o .
P = 53 DRI Aoy (ko) + Bay'y (ka0) ) (53)
Thus, the total metallic loss on surfaces r=a and r=c is obtained by adding the RHS of Eqs. (50) and (53) as,
8 /w . .
P = 3/ 52 {162® (] (ki) + By (10))° + 162 (af s (ko) + Ba'1 (ko)) | (54)

Similarly, the expressions of the metallic loss on surface r=a and r=c for the TE;q, and TE3y, modes are given by,

24

Puz=% “;’;"{ a2(Aj', (ki) + BY'5 (k1)) + K2 (G5 (ko€) + Dy, (kzC))? } (55)
48 )

Py =—= oK 0{1232(A1]3(k1a)+B1y 5(k10))* + K3 (Ay] 3(sz)+Bzy’3(sz))2} (56)

2.3.2. Dielectric losses for the TE modes
Dielectric loss for the TEqq,, TE;g, and TE3p, modes are calculated to be,

P = oWE + WJE)tans (57)

Py, = o(W]E + WJ5)tans (58)

P35 = o(WIE + WIE)tans (59)
s 1.3 2.3

Where, tan § represents the loss tangent for a dielectric material, which is defined by tan§ =0 /(w € ¢ € ;) where ¢ ;is the dielectric
constant of the medium and € is the permittivity of vacuum, o is conductivity of the medium, and w is frequency [1-8,41]

2.3.3. Metallic losses for the TM modes
For the TM;p, mode

H =0
Hy =0
Hy = m:/ef {A1]3/2 (k;r) +B;Y3) (k,r)}sm@ (60)

Hy-Hy =2 6°(€) [AJs2(kiT) + BYs 2 (kjr) }sin26

where indexj:l for TM19, modes in the region a < r < b and index j=2 for TM;o, modes in the region b < r < c.
Using Eqs. (47) and (60) for the region a < r < b one gets,

wzeo( .
Piy = ———— Rs // {Aj1 (ki) + By (kir)}* 12 sin®0 do d¢ (61)
or
ity = 5y 25007 & ()22 (s (i) + Buy () (62)

Using Eq. (47) and (62) we get the metallic loss on r=c for index j=2 in the region b < r < c as,

w? <2 (er)?
Pnfl = eon(ez)RS/ {Agj1 (kor) + Bay: (ko) Yr?sin®0 dO d¢ (63)

which is simplified to,

, 8 /w .
Py = 5y 20 € (€5)° Ao (ka0) + Boyi (ka0)) (64a)
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Thus, the total metallic losses for the TM;g, modes is given by,

8 /w . .
P = 3y DE20? 3 [(€D)*a® (Auji (ki) + By (ki) + (5)°C (v (ko) + By (k)]
Similarly, the metallic losses on metal surfaces for the TMq, and TM3, modes are given by,
24 o . .
Pho= 5 %wz 3 [(€5)*a? (Arj2 (k1a) + B1y2 (k1)) + (€5)°c(Arja (ka€) + B1y2 (ka0))]
48 /o . .
s = ) aea? € [(€5) a2 Aujs (ki) + By (ki) + (€5)°c(Aujs (ko) + Brys (ko)) )

2.3.4. Dielectric losses for the TM modes
Dielectric losses for the TMg,, TM5q, and TM3g, modes are given by,

B, = oW/ + W, Htans
Péyz = w(W1T12Vl + W{_’{’)tan8

Py = WY + W/)tans

2.4. Quality factor

The Quality factor Q is given by

- l)m + l)d

where the terms appearing in Eq. (70) have already been explained [1-8,36-41].

Q

2.4.1. Expression of Q for TE modes
For the TE;p, mode the expression for the Q factor is given by,
Wi§ + Wi
=-Q—
Pm,l + Pd,]

4 . . . .
Wi = s0’ugeo € (A {2 (kir) — jo(kir)ja (k1) } + By {y2 (ket) — yo (Kyr)ys (Kir) } + AyByr® (2y1 (kyr)jy (kyr)

—Yo(kiD)jz (kir) — ya (Kir)jo (k1) } 5
W2T€ = ngﬂfzjeo € [Azzr3 (jf (kzr) — jo(kor)ja (kor) } + 3221‘3{3/% (kar) — yo(kar)yy (kzl')} + AoB,r2 {2y (kar)ji (kar)
—Yyo(kar)ja (kar) — y2 (kar)jo (kar) }j
8 [ a2 (A () + Bry', (ki @)} + 13 Ao, (o) + By (ko)) ]
3 20 1 1 1
Pj1 = oW/E + WJE)tans

Pm,] =

For the TE;q, mode the expression for the Q factor is given by,
0=w WS + W5
Pm2+Pq>

where,

w5 = %wzuéeo el [A {3 () — ji (kin)js (kar) } + Bi?r?{y3 (kir) — ya (Kin)ya (ko) | + AgByr® 2y (kir)ja (ke )
—y1(kin)ja (k1) — y3 (ker)jy (kar)}
Wy = %wzué €3 ()’ 1A {3 (kar) — j1 (kan)js (ker) } + Bi*r* {y3 (kar) — y1 (Kar)ya (Kar) | + AsBar® {2y, (ko) (Kar)
—y1(kar)js (kar) — y3(kar)ji (k2r)}j
Pz = 2 G2 Ay (@) + Biy'y (k1)) + ke Aol (ko) + Bay' (k) )]
Py = o(W5 + W5)tans
Similarly, for the TE3p, mode the expression for the Q factor becomes,

0= WS +W)5
Pm3+Pqg3

(64b)

(65)

(66)

(67)

(68)

(69)

(71)

(72)

(73)
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where,

Wi = z—fwzuéeo &h AP (an) — 2 (inja(kin)} + Bi?r{y3 (kir) — y2 (kin)ya(kin)} + ABir® ys (kin)js (kar)
—y2(kir)ja (kq1) = ya(Kyr)jz (ker)}

w;5 = 274wzuéeo &5 [Cr{j5 (kar) — jo (Kan)ja(kar))} + B2r{y3 (kar) - Va (kar)ya(kar)} + ABr*{2y3 (kar)js (kar)

—y2(kan)ja(kar) — ya(kor)ja (kar)} ¢

23—4 %[k%az {A1j'3 (k@) + B1y'5 (k1) }? + k32 {Azj'5 (kac) + Bay'5 (kac) }?]

P35 = (W5 + WJ%)tans

Pm.3 =

2.4.2. Expressions of Q for the TM modes
Similar to the case for the TE,y, modes, the expressions for Q have been derived for the TM,o, modes and these are given below:
For the TM9, mode,

Wiy
< (P’m,l +Paa (74)

where,

4 . . . . .
WY = S0%k0 € (€D’ IAP{ (ar) — jo(aniz(kin) + Bi*r* (v} (kar) = yo(kinja (ki) + AiBir® )1 (kinys (kar)
—Yo(kinjz(kir) = jo(kir)ya (kin)}1;

4 . . . .
WM = Za?pg €2 (€5)* (A0 (12 (Kar) — o (kaT)jz (kar)} + Ag? {3 (kat) — Yo (Kar)ys (Kat)} + AgByr? {2 (kar)ys (Kar)

3
—Yo(kan)ja (kar) — y2 (Kar)jo (ko) I
8 . .
Pt = 59/ D202 & [(D)*a (A1 (k1) + By (ki) + (5)° ¢ (Ao (ka0) + By (kz0))]

P41 = oW + Wy })tand
For the TM5q, mode,

wis +wpy

< ( Pma+Pqo (75)
12 . . . .

wiy = ngﬂo & ()’ 1A kar) — i (kin)js () | + By {y3 (ker) — ya (an)ys (ker) | + AgByr® () (ke )y, (Kqr)
—y1 (kiD)js (ky1) = j1 (ke1)y3 (k1) }5
12 . . . ,

Wil = 2 0’1o € (€5)° 142 {3 (kar) — 1 (kar)j3 (kar) | + Bor® {5 (Kar) — y1 (Kar)ys (Kar)} + AzBor {22 (Kar)Ya (Kar)
—y1(kan)ja(kar) — j1 (kar)ys (kar)}j
24 o . .

Py = 5 S20? € [(D)’a*{Mjz(kia) + Bayr (ki) + (€5)”D? {Aala (ko) + By2 (k)]

P> = oW/ + W7 tans

and for the TM3q, mode,
Wit +wi§

where,
24 . . . .

wit = 70)2#0 €8 (€D’[AP{i (kir) — 2 (kinja (ki) } + B2 {y3 (kir) — ya (kar)ya (ki) } + AgBir® 2ys (kir)js (kir)
—y2(kaD)ja(kir) = o (an)ya (kin) g
24 . _ . :

WIY = Z0? o f (€5)° 1A’ {3 (kar) — Jao (Kar)ja(Kar)} + B {y3 (Kar) — Va2 (Kar)ya (kar)} + AiBir*{2y3 (kar)js (kar)

—ya(kar)ja(kar) — j2 (Kar)ya(kar)}j

48 w . .

0 DL (€13 (s (ki) + Brys (ki) + € (€5)C(Aads (kac) + Bays (ka0) ¥

7
Py3 = oWY + W] ¥)tans.

/
Pm,3:
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Fig. 2. Variation of Resonant frequency with radius for TMq;, TM103, TM105, TEq01,
TE 93 and TEos modes.

3. Results and discussions
3.1. Resonant frequencies

The spherical Bessel functions j,(x) and y,(x) have been used to
solve characteristic Eqs. (9) and (15) for the TE and TM modes. A
mode with a given value of n is n+1 fold degenerate i.e. (n+1)
modes have the same resonant frequency. In this case also five
roots (¢=1-5) for each of Egs. (9) and (15) have been determined
and the resonant frequencies have been calculated for the TEpm,
and TMpm¢ modes (n=1-3; {=1-5) using €] =4.0 and €, =378,
a=01-09pum, b=10-9.5pm and c=1.5-10.0pm. In this case
the value of a is limited by the value of b (radius of the inner di-
electric sphere). Resonant frequency has been computed as a func-
tion of one of the three radii a, b and ¢ keeping the other two
constant.

Fig. 2 shows variation of the resonant frequency with , for the
TEnme and TMpm, modes.

It is observed that when the concentric metallic sphere radius
a is increased from 0.1 pm to 0.9 um with ,=1.0pm and = 1.5um,
the resonant frequency increases monotonically. However, increase
is slow due to the fact that the inner radius cannot exceed 1pum
(the value of ;) and the outer radius . is 1.5pum. Hence 4 is of res-
onator studied in shielded dielectric spherical shell resonator [36-
40]. By changing the radius , of the inner dielectric sphere no ap-
preciable change in frequency is observed due to small difference
in the permittivities of the materials of the inner and the outer
dielectric spheres.

Fig. 3 shows variation of the resonant frequency with . for the
TE19, and TM;g, modes.

It can be seen that when we increase the radius . of the outer
dielectric sphere, the resonant frequency of the shielded composite
dielectric resonator decreases monotonically.

3.2. Quality factors

With the help of Egs. (74) and (76) we have calculated the qual-
ity factors for the TEp, and TMg, modes.

Fig. 4 shows the variation of the quality factor with the radius
c of the outer dielectric sphere for the TE;g, and TM;o, modes.

When the outer radius (c) of the shielded composite dielectric
spherical shell resonator increases the quality factor Q of the res-
onator increases monotonically. Effect of the radius (a) of the inner

L —
3 b
A — TMio: D - TE01
B — TMios E —TE103
0 sl C —TMios F —TE10s
EN €] =4.0,e; =3.78
; a=0.1pm,b=1.0pm
[=)
—
X
> 1k
0
1 2 3 A 5 6 7 8 9 10

Fig. 3. Variation of resonant frequency with radius for TMyg;, TMj03, TMy0s, TE101,
TE103 and TE;ps Mode.
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900 ¢ TMys FeTElus
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I ,.____o.__-—o-—-—“o'
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Fig. 4. Variation of Q-factor with radius for TMjo;, TMj03, TM1gs5, TE101, TE103 and
TE1p5s modes.

metal sphere on the quality factor has also been studied. Similar
to the case of the resonator studied in shielded dielectric spheri-
cal shell resonator [22,23], here also a could be varied in a very
limited range due to its strong effect on the Q values. By increas-
ing the size of the inner concentric metal sphere the quality fac-
tor is reduced significantly. It is found that when the radius a of
the inner metal sphere is increased from 0.1 pum to 0.5um with
b=1.0pm, c=15pum the quality factor drops from 138 to 28 for
the TE;9; mode. It is to be noted here that the quality factor de-
creases with increasing radius a for TE,o, and TM,g, modes. It
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is observed that when the radius a is increased from 0.1 mm to
0.9mm with fixed values of b (=1.0mm) and c¢ (=1.5mm), the
quality factor varies in the range 59-1228 for TE;y, modes and in
the range 66-1166 for TM,o, modes (n=1-3, ¢=1-5).

3. Conclusions

In the present paper, an electromagnetic field analysis of the
composite dielectric spherical shell resonators has been studied in
details. It is found that when the outer radius (c) of the shielded
composite dielectric spherical shell resonator increases the qual-
ity factor Q of the resonator increases monotonically. This high
value of quality factor (Q) of the dielectric resonators have been
used as stabilizing devices for oscillators in microwave integrated
circuits. It is also the resonant frequencies, field distributions and
Q-factors for particular modes (TEpo, and TMpe,) in dielectric res-
onators on micro-strip substrates or supporters, and with or with-
out tuning devices, have to be efficiently obtained. Thus, the stud-
ies of shielded multilayer dielectric composite resonators indicate
the possibilities of increasing their Q-factors and improving their
spectral characteristics. It is also observed that by an introducing
of an inner concentric superconducting sphere within a dielectric
spherical resonator is a more effective controlling parameter for
the resonant frequency than the other parameters.
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Appendices
Appendix - A

Spherical polar coordinates (t, 6 and ¢)
The spherical polar-coordinates system consists of the follow-
ing:

(i) Concentric spheres centered at the origin,

r = /X2 +y?+27z2 = constant. (A1)

(ii) Right circular cones centered on the z-(polar) axis, vertices
at the origin,

0 = arc cos = constant. (A2)

z
/x2 +y2 +22

(iii) Half planes through the z-(polar) axis,

y

¢ = arc tan; = constant. (A3)

In spherical polar coordinate system there lies symmetry about
a point. The position of any point P is specified in spherical co-
ordinate r, & and ¢, as shown in Fig. A.1(a). 7, 8 and ¢ are the
unit vector which of perpendicular to each other and from a right
handed triad of unit vectors. Fig. A.1(b) shows that

the line element dr=7dr+0rdo + (fﬁ rsinfdg, (A4)

the area element dA =12 sind df d¢ (A5)

and the volume element dV =12 sind drdf d¢ (A6)
The Cartesian and spherical polar coordinate are related as,

X =r sin 6 cos ¢
y=rsin 6 sin ¢ (A7)
z=r cos 6

21 rsing
% rsin 6 d¢
0
N
PIRNG
A
A
N N
X -
(b)

Fig. A.1. Spherical polar coordinates.

V Operations in spherical polar coordinates
The basic V operations in spherical polar coordinates are given
below,

S 0y A1y . 1 Y
VU = T5r 0% 50 T 0 rsing 96 (A8)
S - 1.0 ., 1 1 Ay

A= 5T e 90 (Smg O+ 5ing 3¢ RL) (A9)
- 1 L0y 1 oy 1 9%y

2 = — L
Vi =5 r( ar )+r25in9 30 (S inf5g )*,zsng 32

(A10)
B 1 f 0 rsinf¢
VX T 12sind % % % (A1)
A TAy sind Ay

Vector identities

Several important vector identities are given below:
V.(YA) = AV +yVA (A12)
Vx (YA) = VY xA+ ¢V xA (A13)
Vx(VxA=V@A.V)+V24A (A14)
VY =V (A15)
Appendix - B
Legendre’s polynamial

Legendre differential equation of order n is

ey, d¥ _

(1-2) 5 = 2 n(n+ 1)y =0 (B1)

where n is a positive integer or zero. The equation of such type
can be solved in series of ascending or descending power of x. The
solution of the Legendre’s differential equation are given by,

(i) For even n,

P,(x) = Ap [1 — n(n+1)— —-n(n+1){2.3 - n(n—H)}—4

—n(n+1){2.3 —n(n+1)}{4.5 - n(n—i—l)}g—?
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(ii) For odd n,

X3
P.(x) = An |:x+{1.2 - (1)) 37

+{1.2-n(n+1)} {3.4—n(n+1)};(—5'+

Legendre’s Polynomials Pn(x) for some order are given below,

P(x) =

P(x) =

P(x) = 5(3x* —1) (B4)
P;(x) = $(5x3 —3x)

Py(x) = §(35x* —30x? + 3x)
Associated legendre’s polynomial
The differential equation
d? d
Kﬁ 2xd¢+{n(n+1)
is called Legendre’s associated equation of order n. Substituting
x=cosf, Eq. (B5) takes the form,

d*y lﬂ
qoz + coth —— 10

(1- ) }w 0 (B5)

{n(n—H)— 29}1#(9)=0 (B6)

The solution of above Eq. (B5) is given by,
my2 d™

Pl (x) = (1-x%) T
P"(x) is called associated Legendre polynomial of the first kind.

The associated Legendre polynomials of the second kind Q[ (x) is
also solution of Eq. (B5) and it is given by,
)m/z dm

Q') = (-1)"(1-2)" 22 Qe () (BS)

However, Q' (x) solution of Eq. (B5) is not of our interest. From
the definition of associated Legendre polynomial, given by Eq. (B7),
it is clear that

B (x) (B7)

PO (x) = Pa(%) (B9)
P'(x) =Pi(x) = x = cosf

Pd(x) =P(x) = 3(3x* —1) = 1(3cos?0 — 1) (B10)
Pd(x) =P3(x) = 3(5%°—3x) = 1(5c0s°0 —3cosh)

Expressions for some associated Legendre’s polynomial are
given are given below,

Pd(cos6)=1,
P9(cos8) = cos®,
P] (cos6)=sind,

P}(cos )= 3sin?0
PY(cosf) = 1 cosf(5cos?0 — 3)
P} (cos0) = 3sinf (5cos?0 — 1)

PY(cosf) = 1(3cos?0 — 1),  P}(cos6)= 15 cosBsin?0
P} (cos )= 3 cosOsinb, P3(cos €)= 15sin0
(B11)
P 0= —2 PG [0 (n+1) — m (m=1)] P (x) = 0
(1-x2)2

(B12)

(] — X )2 Pm (x) ,Pm+l(x) 7(n+m) (n_m+-1) P;n—l(x)

(B13)

The dash on P in Eq. (B13) denotes its derivative with respect
to argument x.

Appendix - C

Bessel’s functions
The differential equation

¢y 1dy <1_>¢ 0 (1)

iz t7dz
is called Bessel’s differential equation of order p.

This equation has a non-essential singularity at the point z=0
and therefore its solution can be obtained as a power Series devel-
oped about this point. Series solution of Eq. (C1) is given by,

» 2 z4
(@) = 2pp! {1 PG+ 22Mpr e+
(_ -l)rZZr
AP (D) i) } )

where Jp(z) is called the Bessel function of the first kind of order p.
The Second solution of Bessel’s Eq. (C1) is given by,

Z(p lel)'<2>2q7p
() (e

1
e + 14—+ +7) (C3)

Vo(2) = 2y +og@/lp(2) — 1

where y is usual Euler's Mascheroni constant. Yp(z) is called the
Bessel function of the second kind of order p. Therefore, the com-
plete general solution of Bessel’s differential equation is

y=AJp(2)+BY,(2) (C4)

where A and B are any constants.

Recurrence relations for Bessel’s functions

2p )o@ =2 {Jp-1 @ Hp1 (@) (C5)
2[,(2) =Jp-1@) ~Jp1 (@) (C6)
2], (2) =Jp-1(2) — pJp(2) (C7)
2],(2) = plp(2) — 2]p11(2) (C8)

where dash denotes differentiation with respect to the argument.

Spherical Bessel functions

The spherical Bessel functions are defined as solution of differ-
ential equation

%*2 Z—R—i—[kzrz—n(n—i—U]R:O (C9)

Which is the radial equation obtained by separating the spheri-
cal polar coordinate of Helmholtz equation. Constant k occurs in
Helmholz equation and integer n is a separation constant. This
equation is not Bessel equation but can be reduced to Bessel equa-
tion by the substitution

Z, +1 (kr)

R(kr) = W

(C10)
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Then Eq. (C9) becomes

1 2
r +rr+[k2r2(n+2)i|2=0 (C11)
Which is Bessel’s equation, where z is a Bessel function of order
(n+ 1) for integer n.

Relations between Bessel’s functions and spherical Bessel’s functions

The relations between Bessel’'s function and Spherical Bessel’s
functions of the first kind jn(x) and second kind yn(x) are given as
below,

Sy ) = Y2/ jn ) (c12)

Yn+%(x) =/2X/7TYyn(X) (C13)

Some useful relation involving Bessel’s function and spherical
Bessel’s functions

Jniy GO+2X () = \/§ {Jin (0)+xj, (%)} (C14)
Yn+% (x)+2xYn’+% x) = \/§{yn(x)+xy{1 x)} (C15)
/ajg(kr).rdr _x {] (ka)+<1 - )]2 (ka)} (C16)
0
/a]p(kr) Y, (kr)rdr
b
2l ey P )
= [2 {] p(kP)Y p(kr)—l—(l - W)jp(kr)Yp(kr)”b (C17)
. Jn(x)
Jnp1(®) = —x dx{ x } (C18)
Yn(X)
Y1 (X) = =y dx{ P } (C19)
300 = a0 - T (20)
Yn(X) =Yn1(x) — ("+1)yn(X) (C21)
JnQO+Xjp (%) = Xjn_1 (x) — nja (%) (C22)
Y (X)+xyy, (%) = Xyn_1(X) — nyn(x) (C23)

The desh on J and j denotes derivative with respect to the ar-
gument (Tables 1-3).

Table 1
Expression for j,(x).
no ()
sinx
0 5
sinx cosx.
1 X x
2 smx( 3 _ 1) 3cosx
3 sinx 15 _ 6) + msx (1 15)
4 Sl)l"(l)( (1 x2 + 1[)5) + cosx m _ %
5 %(]574‘;230+945)+cos)<( 1+1057%
sinx 210 4725 10395 cosx 21 1260 10395
6 NI+ - ST )

Table 2
Expression for y,(x).
no ya(x)
0 - ux
[
2 _ 3s|an cosx (1 2 )
i 15
3 SX (] — By 4 cosx(8_ 1
inx (10 _ 105 45 105
4 - )+ )
5 Slxﬂ(*‘l + 1)% 945) 4 cosx( 15 4 420 9;}55
6 s 21 130 10395) Iy (1 210 + 43% _ 10;95)
Table 3
Expression & {xjn(x)}.

n LX)}

1T )+

2 %(3—3)#0%(—“2)

3 WX+ -8)+26-%)

4 slnx (10 195 420) c(lsx (X _ 575 + 4)(230

5 slnx (X ]20 2205 4725) + a;(J(lS GX?:ZO + 4725

6 smx (21 1680 + 29295 _ 62)(#) + CL;SX( X+ 2)3‘1 8505 + @)
Appendix - D

In the present work eigen modes of a spherical homogeneous
and isotropic dielectric resonator enclosed in a metallic spherical
shell are determined using straightforward procedure. In a source-
free homogeneous isotropic dielectric medium the four Maxwell’s
equations are given by,

V.D=0 (D.1)
V.B=0 (D.2)
- . 0B
VxE=— (D.3)
1))
VixH= o (D.4)

The following equations give constitutive relations between the
electric field vector E and the electric displacement vector D and
the magnetic field vector H and the magnetic induction vector B,

_ =

D=cE = ekF (D.5)

B= puH = jurjoH (D.6)

Here €0 and w0 represent respectively the electric permittiv-
ity and magnetic permeability of the free space, € and pu are the
corresponding quantities for the dielectric material and er=¢/<0,
ur=u/un0. For a non-magnetic dielectric material ur=1. There-
fore, one has

B = uoH (D.7)

«— Metal shield

Fig. D.1. Shielded homogeneous isotropic spherical dielectric resonator.
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Assuming e/t time dependence for the electric field vector E

and the magnetic field vector A and using Egs. (D.5) and (D.6), Egs.
(D.1)-(D.4) are simplified to give,

V.E=0 (D.8)
V.H=0 (D.9)
V x E = —joucH (D.10)
V x H = jwege,E (D.11)

Using expressions for curl in spherical polar coordinates system
(Appendix-A, Eq. (A11)) Egs. (D.10) and (D.11) can solved to give
the expressions for the field components Hy Hg Hy; ErEp and E,.

1 a , . a
H, = _jcum)rZst{E)@(rSIHGE¢) - 8(}’)(”56)} (D.12)
1 .
Hy = — ]a)uorsm@{ 34 (Ep) — r(rsm9E¢)} (D.13)
1 0 0
Hy = — jw,tmr{ar(rEe) - ae(Er)} (D.14)
E = N i(rsin@H ) — rH, (D.15)
" Jweoe,r2sind | 30 9 a¢( 2 :
1 .
= ja)eoerrsin@{ 39 (Hy) — r(rsm9H¢)} (D.16)
1 0 ]
Es = oeeer { o)~ ae(”f)} (D7)

Egs. (D.12)-(D.14) can be used to find magnetic field compo-
nents provided the electric field components are known. Similarly,
Egs. (D.15)-(D.17) can be used to find electric field components
provided the magnetic field components are know. If one takes the
curl of Eq. (D.10) one gets,

V x (VxE)= —joue(V x H)
V(V.E) = VX(E) = —joue(V x H) (D.18)

Using Egs. (D.8) and (D.11) the following differential equation
for the electric field vector E is obtained as,

(V2 + w?oeoer)E=0 (D.19)

Similarly, taking the curl of Eq. (D.11) and using Egs. (D.9) and
(D.10), the differential equation for the magnetic field vector His
obtained as,

(V? + w?poeger)H =0 (D.20)

Egs. (D.19) and (D.20) represent differential equations for the
electric vector E and the magnetic vector H respectively. To solve
Egs. (D.19) and (D.20) the procedure followed by [39-40] which ap-
pears to be rather clumsy. In the present work we use the standard
theory [39-40] to find the electric field and magnetic field vectors
for the TEpm, and the TMy,, modes separately. For the TE,,, mode
the following condition is satisfied by the electric field vector E,

FE=0 (D.21)
Validity of Eq. (D.21) suggest that the electric field Ecan be

written in term of the gradient of some scalar function v as,

E= (D.22)

=

x Vi

=L

Replacing Ein Eq. (D.21) by the expression on the RHS of Eq.
(D.22) satisfies Eq. (D.21). Hence, Eq. (D.22) gives the general ex-
pression for the electric field vector E. Here v is any well behaved
scalar field that satisfies the Helmholtz equation. The Helmholtz
equation for ¥ is given by,

(V2+ k)¢ =0 (D.23)

where 1 is some scalar function of the co-ordinates r, 8 and ¢
iear=1y (r, 0, ). The expression of VZ2in the spherical polar coor-
dinate system is given by

2. _ 31# Yy 1 3%y
\Y w_rZSme{sm@(r (sm@ )+51r19 562 }
(D.24)

Now assuming v (r,0,0)=R(r) ©(0) ®(¢), and employing the
method of separation of variables, Eq. (D.23) gives,

. R ., R . e | e &
20290 2t 2
resin 9R + 2rsin QR + sin 9® +sm€cos€® +

+w?egoer?sin?0 =0 (D.25)

where single dot denotes the first derivative with respect to r,
6 and ¢ and the double dots denotes the second derivative with
respect to r, & and ¢. Now as the variable ¢ occurs in ©(¢)/®(¢)

only, it can be replaced by some constant, say, -m? i.e.

d@) |,

—=+m°=0 D.26
(@) (D-26)

The symbol m appearing in Eq. (D.26) can take integral values
only due to the reason given after Eq. (D.34). The solutions of Eq.
(D.26) are given by

cosmae
{<I>(¢) ~ sinme } (D.27)
Replacing ©(¢)/®(¢) by -m? in Eq. (D.25) it reduces to the fol-
lowing form,
Pls 2. 5 m?@®
F{R + ?R+ w EOMOGrR} o) {@ +cotf® — prr } =0
(D.28)

In Eq. (D.28) since the terms in the first pair of brackets is a
function of r only and the terms in the second pair of brackets is
a function of 6 only, the two bracketed terms can separately be
equated to constants. Let the first bracketed term be replaced by
a constant n(n+1) then Eq. (D.28) splits into the following two
equations as,

2
—@0
vl

nn+1)
—

O + Ocotd + {n(n+1) - (D.29)

R+ %R + {wzuoeger R=0 (D.30)

The solutions of Eq. (D.29) are associated Legendre Polynomials
PM"(cosf) and QI (cosf) (Appendix-B). However, Q[ (cos6€) has
singularities at cos 6 = =41, leading to infinite values of i, which
will lead to infinite values of the electromagnetic field vectors E
and H. Therefore, the acceptable solution of Eq. (D.29) is given by,

®(6)~P(cosB) (D.31)
In order to find solution of Eq. (D.30) let us substitute X = R/t
in Eq. (D.30). By this substitution Eq. (D.30) reduces to,

. 1 2
.. n 5
x+)7<+ {wzuoeoer—(;z)}xzo (D.32)
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Here, the dots denote derivatives with respect to r. Eq. (D.32) is
Bessel’s differential equation of order (n+ %) (Appendix—C). On

changing the variable from r to (y/w?ugeoer)r = (w/Mo€or)r
= (£./€)r =kr, where c= \/MT is the speed of light in vacuum,
Eq. (D.32) has the solutions of the form J, = (kr) or Y, = (kr) or a
linear combination of these two Bessel functlons Smce Y nel (kr)

has infinite value at r=0, any linear combination of]n+l(kr) and
2
Y, 1(kr) also has finite value at r=0. But at r=0 the field vec-
2

tors have finite values. Therefore, the acceptable solution of Eq.
(D.32) is of the form,

X(1)~Jy, y (kr)

Thus, the form of R(r) is given by, R(r)~J, "
fore, one can write the expression for ¥ as,

v (r,0.,0) ~%}n+%(kr)ﬂf’(cos 0)cos mg

In the expression (D.34) A is a constant which can be deter-
mined from the boundary conditions. Here we have dropped the
sinm¢ term without any loss of generality. Since ¥ is a single
valued function, it must take the same value for ¢ and ¢ + 27.
So cosm¢ = cos(m¢ + 2mw) = cos(mp+2mm) = cosm¢ only when
m= 0, +1, £2, 43, ... i.e,, m takes integral values only. This same
requirement limits n also to integral values only. Negative values of
m give the same field distributions as positive and hence, do not
provide separate solutions. Similarly, negative values of n also do
not produce extra solutions. The constant m must be less than or
equal to n. The possibilities that the constant n can or cannot take
value as 0. However, m can always take O value and it gives rota-
tional symmetry about the diameter of a sphere joining the points
6 = 0° and 6 = 180°.

Using the expression for (r,0,¢) from Eq. (D.34), one can find
out the expression for the field components for the TE;,, and the
TMpme modes.

(D.33)
%(kr)/ﬁ and there-

(D.34)

D.D.(1) Field expressions for the TMpm, modes

Using expression for ¢ from Eq. (D.34) the electric field compo-
nents for the TE;,, modes can be determined using Eq. (D.22) and
the expression of Viwhich is given as,

w oy 1 9y
vy =1 +9r 00 +¢rsin9 ¢
Using Eq. (D.35), the electric field Eis determined as follows,

= =

Fx Vi

(D.35)

=

Vy

=5

g‘:

ol O Dy
[ RS

¥ 1

90 rsind

==

[
SR

T
1 0
~ “sind 8¢ ¢

Now expressing Eby,
E = FE, + OF, + $E,

and comparing the components from Eqs. (D.36) and (D.37) we get,

ﬁ
QJ
‘S

(D.36)

(D.37)

E =0 (D.38)
1 9y
£, = 2V (D.40)

Substituting the value of v from Eq. (D.34) in Egs. (D.38)-(D.40)
we get,

E-=0 (D.41)
\/,m 9]n+1 (kr)PT*(cos 6) sinmg (D.42)
Ey = }] 1 (kr) {P’“(cos 0)}cos m¢ (D.43)

Alternatively, introducing the angular momentum operator L
defined by I = %(Fx V),where j=+/=T and constructing [2and
using its relationship with the Laplacian operator (V2), the solu-
tion for the TE mode can be constructed following [39-40]. The
above method and the method used earlier to find solution (Egs.
(D.41)-(D.43)) yield equivalent results as can be verified from the
field expressions (Eqs. (D.41)-(D.43)) and the ones given [39-40].

Now substituting the value of E;Ey and E, from Egs. (D.41)-
(D.43) into Egs. (D.12)-(D.14), one obtains expressions for H;,Hy and
Hy. The RHS of Eq. (D.12) involves E, and E, and substituting the
values of Ey and E, from Egs. (D.41) and (D.43) it yields,

Al, +1 (krycos m¢ "
H, = —Wx |:s d@Z{P (cosB)}
2c059—{Pm (cos ) (cos@)}} (D.44)

Using recurrence relation for P'(cosf) [Appendix-B, Egs.
(B10) and (B11)] the term within the square bracket of Eq. (D.44) is
simplified to give —-n(n+1) P (cos6).

Therefore, the expression for Hr becomes

nn+1)A
————J..1(kr)P"(cos 0)cos m¢
joporvkr "

To get the expression for Ey and E, is straightforward, as RHSs
of Egs. (D.13) and (D.14) involve Er which vanishes for the TE;n,
mode leaving single term for these equations. The expression for
Hy and H, are determined as

H - (D.45)

A m
Hy = ]w,uorfdr{fj’”](kr)} {P™(cos@)}cos m¢  (D.46)
mA .
Ho == Wdr{f o (k1)) S5 (P (c0s0) sin m

(D.47)
Supplementary materials

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.jqsrt.2018.12.001.
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