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1. Introduction

It is very well known fact that real world problem can be modeled as a mathematical equation. For the existence of a

solution of such problems has been investigated by Several branches of mathematics, such as, differential equations, integral

equations, functional equations, partial differential equations, random differential equations, etc. have proposed solutions

for such problems via fixed point theory. But, application area of the fixed point theory is not only limited by Mathematics,

but also other quantitative sciences, such as, computer science, economics, biology, physics etc. Game theory, branch of

economics, has used fixed point theory techniques and approaches to solve its own problems.

Game theory can be regarded as a formal (mathematical) way to study games. Indeed, we consider the games as conflicts

where some number of individuals ( called players ) take part and each one tries to maximize his utility in taking part in

the conflict. Games can be classified in many ways, but here we focus on the following classification: Cooperative games,

in which, players are allowed to corporate and non-cooperative games,in which, players are not allowed to corporate. In the

sequel, we shall demonstrate how the question of existence of equilibria is related to the question of the existence of a fixed

point.

Throughout the paper, we follow the notion and notation in [24]. We recall some basic concepts.

A three person game G in normal form consists of the following data:

(1). topological spaces S1, S2 and S3, the so called strategies for player 1 resp. player 2 and player 3,

(2). a topological subspace U ⊂ S1 × S2 × S3 of allowed strategy pair,

(3). a triloss operator
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L : U → R3

(s1, s2, s3) 7→ (L1(s1, s2, s3);L2(s1, s2, s3);L3(s1, s2, s3)),

(1)

where, Li(s1, s2, s3) is the loss of player i if the strategies s1, s2 and s3 are played.

A pair (s1, s2, s3) ∈ U is called a non-cooperative equilibrium if

L1(s1, s2, s3) ≤ L1(s1, s2, s3), ∀s1 ∈ S1

L2(s1, s2, s3) ≤ L2(s1, s2, s3), ∀s2 ∈ S2

L3(s1, s2, s3) ≤ L2(s1, s2, s3), ∀s3 ∈ S3.

(2)

Assume that there exist mappings

C1 : S3 → S1

C2 : S2 → S3

C3 : S1 → S2

(3)

such that the following equations hold:

L1(C1(s3), s2, s3) = min
s1∈S1

L1(s1, s2, s3), ∀s2 ∈ S2, s3 ∈ S3

L2(s1, C3(s1), s3) = min
s2∈S2

L2(s1, s2, s3), ∀s1 ∈ S1, s3 ∈ S3

L3(s1, s2, C2(s3)) = min
s3∈S3

L3(s1, s2, s3), ∀s1 ∈ S1, s2 ∈ S2.

(4)

Such mappings C1, C2 and C3 are called optimal decision rules. Then any solution (s1, s2, s3) of the system

C1(s3) = s1

C2(s2) = s3

C3(s1) = s2

(5)

is a non-cooperative equilibrium. Denoting with F the function

F : S1 × S2 × S3 → S1 × S2 × S3

(s1, s2, s3) 7→ (C1(s3);C3(s1);C2(s2)),

(6)

the any tripled fixed point (s1, s2, s3) of F is a non-cooperative equilibrium. Hence, investigation of the existence of a

solution for non-cooperative equilibrium is equivalent to search the existence of a tripled fixed point. For more details about

game theory can be found [24].

The main goal of the present work is to solve the problem of the non-cooperative equilibrium of three person games. For

this purpose, we shall present some tripled fixed point theorems in partial metric spaces. Our aim is to explore not only the

results themselves but also their applications to nonlinear integral equations.

2. Preliminaries

The notion partial metric was proposed by Matthews (see [12, 13]) as a generalization of metric concept to get a better

results in the branches of computer sciences: Semantics and computer domain. Indeed, partial metric is a function that is

obtained from metric by replacing the condition d(x, x) = 0 with the condition d(x, x) ≤ d(x, y) for all x, y. On the last
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decade, a number of authors have brought into focus on the fixed point problems in the context of partial metric spaces as

well as on topological properties of partial metric space see [1, 6, 10, 11] and the related references given therein.

We first need to recall some basic concepts and necessary results. Throughout the paper, N and N0 denote the set of positive

integers and the set of nonnegative integers, respectively. Similarly, R, R+ and R+
0 represent the set of reals, positive reals

and nonnegative reals, respectively.

Definition 2.1 ([6, 12]). Let X be a nonempty set. The mapping p : X ×X → [0,∞) is said to be a partial metric on X if

for any x, y, z ∈ X the following conditions hold true:

(P1) x = y if and only if p(x, x) = p(y, y) = p(x, y).

(P2) p(x, x) ≤ p(x, y).

(P3) p(x, y) = p(y, x).

(P4) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

The pair (X, p) is then called a partial metric space (in short PMS).

Let (X, p) be a partial metric space. Then, the functions dp, dm : X ×X → [0,∞) given by

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y)

and

dm(x, y) = max{p(x, y)− p(x, x), p(x, y)− p(y, y)}

are (usual) metrics on X. It is easy to check that dp and dm are equivalent. Note that each partial metric p on X generates

a T0-topology τp with a base of the family of open p−balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈ X : p(x, y) <

p(x, x) + ε}.

Definition 2.2 ([1, 6]). Let (X, p) be a partial metric space.

(1). A sequence {xn} in X converges to x ∈ X if and only if p(x, x) = lim
n→∞

p(xn, x).

(2). A sequence {xn} in X is called a Cauchy sequence if and only if lim
n,m→∞

p(xn, xm) exists (and finite).

(3). (X, p) is called to be complete if every Cauchy sequence {xn} in X converges to x ∈ X.

(4). A mapping f : X → X is said to be continuous at x0 ∈ X if for every ε > 0, there exists δ > 0 such that f(B(x0, δ)) ⊂

B(f(x0), ε).

Referring to [21], we say that a sequence {xn} in (X, p) is called 0-Cauchy sequence if limn,m→∞ p(xn, xm) = 0. Also, we say

that (X, p) is 0-complete if every 0-Cauchy sequence in X converges, with respect to the partial metric p, to a point x ∈ X

such that p(x, x) = 0. Notice that if (X, p) is complete, then it is 0-complete, but the converse does not hold. Moreover,

every 0-Cauchy sequence in (X, p) is Cauchy in (X, dp).

Example 2.3 ([12, 21]).

(1). Let X = [0,+∞) and define p(x, y) = max{x, y}, for all x, y ∈ X. Then (X, p) is a complete partial metric space. It is

clear that p is not a (usual) metric.

(2). Let X = [0,+∞) ∩Q, where Q is the set of rational numbers.

Define p(x, y) = max{x, y}, for all x, y ∈ X. Then (X, p) is a 0-complete partial metric space which is not complete.
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Proposition 2.4 ([1, 6]). Let (X, p) be a partial metric space.

(1). A sequence {xn} is a Cauchy sequence in (X, p) if and only if {xn} is a Cauchy sequence in (X, dp).

(2). (X, p) is complete if and only if (X, dp) complete. Moreover,

lim
n→∞

dp(xn, x) = 0⇔ lim
n→∞

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xm, xn).

The following lemmas have an important role in the proof of theorems.

Lemma 2.5 ([1, 11]). Assume xn → z as n → ∞ in a PMS (X, p) such that p(z, z) = 0. Then limn→∞ p(xn, y) = p(z, y)

for every y ∈ X.

Lemma 2.6 ([1, 11]). Let (X, p) be a complete PMS. Then

(1). If p(x, y) = 0 then x = y.

(2). If x 6= y, then p(x, y) > 0.

Lemma 2.7 ([1, 11]). Let (X, p) be a PMS. If xn → x and yn → y as n→∞ for all xn, yn, x, y ∈ X then p(xn, yn)→ p(x, y)

as n→∞.

The existence and uniqueness of fixed points fixed points of contractive type mappings in partially ordered metric spaces

has been considered recently by several authors: Ran and Reurings [27], Nieto and Rodriguez-Lopez [28, 29]. Following this

initial result, Bhaskar and Lakshmikantham [18] proposed the notion of mixed monotone property and get Tripled fixed

point results in the setting of partially ordered metric spaces (see also, [19, 30, 31] and the related references therein.) Later,

it was reported that the most of the Tripled fixed point results can be derived from the existence results, and vice versa,

see e.g. [32–34]. On the other hand, Tripled fixed point results still have worths regarding their applications. Most of the

times, using Tripled fixed point theory is most economical way to solve problem (regarding time and speed of the process.)

This paper can be considered as an example in this direction.

Recall that a pair (x, y, z) ∈ X ×X ×X is called a tripled fixed point of the mapping T : X ×X ×X → X if T (x, y, z) =

x, T (y, x, y) = y, T (z, y, x) = z.

Definition 2.8. Let (X,≤) be a partially ordered set and T : X ×X ×X → X. The mapping T is said to have the mixed

monotone property if T (x, y, z) is monotone non-decreasing in x and z and monotone non-increasing in y, that is, for any

x, y, z ∈ X

x1, x2 ∈ X,x1 ≤ x2 ⇒ T (x1, y, z) ≤ T (x2, y, z),

y1, y2 ∈ X, y1 ≤ y2 ⇒ T (x, y1, z) ≥ T (x, y2, z),

z1, z2 ∈ X, z1 ≤ z2 ⇒ T (x, y, z1) ≤ T (x, y, z2).

Next, we introduce a class of functions which plays a crucial role in this paper.

Let F : R+
0 → R be a mapping satisfying

(F1) F is strictly increasing and continuous.

(F2) For each sequence (an) ⊂ R+
0 , lim

n→∞
an = 0 if and only if lim

n→∞
F (an) = −∞.
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We denote with F the family of all functions F that satisfy the conditions (F1) − (F2) (see [22]). It is easy to check that

F (x) = lnx and G(x) = lnx+ x for all x ∈ R+
0 belong to F .

In [20], D. Wardowski introduced the new concept of F - contraction and proved fixed point theorems in the classical setting

of metric spaces. In [22], the authors introduced the concept of F - contraction, generalized F - contraction and proved

some fixed point theorems for multi-valued mappings in the partial metric spaces (see also, [2, 3]).

Definition 2.9 ([22]). Let (X, p) be a partial metric space. A mapping T : X ×X → X is called an F -contraction if there

exist F ∈ F and τ ∈ R+
0 such that

τ + F (p(Tx, Ty)) ≤ F (p(x, y))

for all x, y ∈ X.

3. Auxiliary Results: Tripled Fixed Points in Partial Metric Spaces

In this section we state and prove some new Tripled fixed point results for F -contractive mappings in the context of complete

partial metric spaces.

Theorem 3.1. Let (X,≤) be a partially ordered set and suppose there exists a partial metric p on X such that (X, p) is a

0-complete partial metric space. Let T : X ×X ×X → X be a continuous mapping having the mixed monotone property on

X. Suppose also that

(1).

τ + F
(
p(T (x, y, z), T (u, v, w))

)
≤ F

(
max

{
p(x, u), p(y, v), p(z, w)}

)
(7)

for all x ≤ u, y ≥ v, z ≤ w, for some F ∈ F and τ > 0.

(2). There are x0, y0, z0 ∈ X such that x0 ≤ T (x0, y0, z0), y0 ≥ T (y0, x0, y0), z0 ≤ T (z0, y0, x0).

Then T has a tripled fixed point, that is, there exist x, y, z ∈ X such that x = T (x, y, z), y = T (y, x, y), z = T (z, y, x).

Proof. Let x0, y0, z0 ∈ X be such that x0 ≤ T (x0, y0, z0), y0 ≥ T (y0, x0, y0), z0 ≤ T (z0, y0, x0). Let x1 = T (x0, y0, z0),

y1 = T (y0, x0, y0) and z1 = T (z0, y0, x0). Then x0 ≤ x1, y0 ≥ y1 and z0 ≤ z1. Again, let x2 = T (x1, y1, z1), y2 = T (y1, x1, y1)

and z2 = T (z1, y1, x1). Since T has the mixed monotone property, the we have x1 ≤ x2, y1 ≥ y2 and z1 ≤ z2. Continuing

this way, we get three sequences {xn}, {yn} and {zn} in X such that xn+1 = T (xn, yn, zn), yn+1 = T (yn, xn, yn), zn+1 =

T (zn, yn, xn) and

x0 ≤ x1 ≤ x2 ≤ ... ≤ xn ≤ xn+1...,

y0 ≥ y1 ≥ y2 ≥ ... ≥ yn ≥ yn+1...,

z0 ≤ z1 ≤ z2 ≤ ... ≤ zn ≤ zn+1...

Now, for each n = 0, 1, 2, ..., we have

τ + F
(
p(xn, xn+1)

)
= τ + F

(
p
(
T (xn−1, yn−1, zn−1), T (xn, yn, zn)

))
≤ F

(
max{(p(xn−1, xn)), p(yn−1, yn), p(zn−1, zn)}

)
(8)

τ + F
(
p(yn, yn+1)

)
= τ + F

(
p
(
T (yn−1, xn−1, yn−1), T (yn, xn, (yn)

))
5
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≤ F
(

max{p(yn−1, yn), p(xn−1, xn), p(yn−1, yn)}
)

(9)

τ + F
(
p(zn, zn+1)

)
= τ + F

(
p
(
T (zn−1, yn−1, xn−1), T (zn, yn, xn)

))
≤ F

(
max{(p(zn−1, zn)), p(yn−1, yn), p(xn−1, xn)}

)
(10)

Since (8), (9), (10) and F is increasing we get that

τ + F
(

max{p(xn, xn+1), p(yn, yn+1), p(zn, zn+1)}
)
≤ F

(
max{p(xn−1, xn), p(yn−1, yn), p(zn−1, zn)}

)
. (11)

It follows that

max{p(xn, xn+1), p(yn, yn+1), p(zn, zn+1)} ≤ max{p(xn−1, xn), p(yn−1, yn), p(zn−1, zn)}

for all n = 1, 2, ... Hence, the sequence rn := max{p(xn, xn+1), p(yn, yn+1), p(zn, zn+1)} is a non-increasing. Thus, there is

r ≥ 0 such that lim
n→∞

rn = r. Since F is continuous, letting n→∞ in (11), we arrive at

τ + F (r) ≤ F (r).

Since τ > 0 and the definition of F , we can deduce that F (r) = −∞, this implies that r = 0. Therefore

lim
n→∞

max{p(xn, xn+1), p(yn, yn+1), p(zn, zn+1)} = 0. (12)

Next, we shall claim that

lim
m,n→∞

max{p(xm, xn), p(yn, ym), p(zn, zm)} = 0. (13)

Suppose to the contrary, then there exits ε > 0 for that we can seek three subsequences {xm(k)} and {xn(k)} of respectively

{xm} and {xn} such that n(k) is the smallest index for which

n(k) > m(k) > k, max{p(xm(k), xn(k)), p(yn(k), ym(k)), p(zn(k), zm(k))} ≥ ε. (14)

This mean that

max{p(xm(k), xn(k)−1), p(ym(k), yn(k)−1), p(zm(k), zn(k)−1)} < ε, (15)

and we obtain

p(xm(k), xn(k)) ≤ p(xm(k), xn(k)−1) + p(xn(k)−1, xn(k))− p(xn(k)−1, xn(k)−1)

≤ p(xm(k), xn(k)−1) + p(xn(k)−1, xn(k)) < ε+ p(xn(k)−1, xn(k)).

(16)

Similarly, we get that

p(ym(k), yn(k)) < ε+ p(yn(k)−1, yn(k)). (17)

and

p(zm(k), zn(k)) < ε+ p(zn(k)−1, zn(k)). (18)

Combining (14), (16), (17) and (18), we obtain

ε ≤ max{p(xm(k), xn(k)), p(ym(k), yn(k)), p(zm(k), zn(k))}

≤ ε+ max{p(xn(k)−1, xn(k)), p(yn(k)−1, yn(k)), p(zn(k)−1, zn(k))}
(19)
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Letting k →∞ in (19) and using (12), we have

lim
k→∞

max{p(xm(k), xn(k), p(ym(k), yn(k)), p(zm(k), zn(k))} = ε. (20)

Now, by the fact that

p(xm(k), xn(k)) ≤ p(xm(k), xn(k)−1) + p(xn(k)−1, xn(k))

p(ym(k), yn(k)) ≤ p(ym(k), yn(k)−1) + p(yn(k)−1, yn(k))

p(zm(k), zn(k)) ≤ p(zm(k), zn(k)−1) + p(zn(k)−1, zn(k))

we obtain

max{p(xm(k), xn(k)), p(ym(k), yn(k)), p(zm(k), zn(k))} ≤ max{p(xm(k), xn(k)−1), p(ym(k), yn(k)−1), p(zm(k), zn(k)−1)}

+ max{p(xn(k)−1, xn(k)), p(yn(k)−1, yn(k)), p(zn(k)−1, zn(k))}.
(21)

By the same argument, we also have

max{p(xm(k), xn(k)−1), p(ym(k), yn(k)−1), p(zm(k), zn(k)−1)} ≤ max{p(xm(k), xn(k)), p(ym(k), yn(k)), p(zm(k), zn(k))}

+ max{p(xn(k)−1, xn(k)), p(yn(k)−1, yn(k)), p(zn(k)−1, zn(k))}.
(22)

Letting k →∞ in (21), (22) and using (12), (20), we have

lim
k→∞

max{p(xm(k), xn(k)−1, p(ym(k), yn(k)−1), p(zm(k), zn(k)−1)} = ε. (23)

Next, since xm(k) ≤ xn(k)−1, ym(k) ≥ yn(k)−1 and zm(k) ≤ zn(k)−1, we have

τ + F
(
p(xm(k)+1, xn(k))

)
= τ + F

(
p
(
T (xm(k), ym(k), zm(k)), T (xn(k)−1, yn(k)−1, zn(k)−1)

))
≤ F

(
max{p(xm(k), xn(k)−1), p(yn(k)−1, ym(k)), p(zn(k)−1, zm(k))}

)
.

By the same reason, we also have

τ + F
(
p(yn(k), ym(k)+1)

)
= τ + F

(
p
(
T (ym(k), xm(k), ym(k)), T (yn(k)−1, xn(k)−1, yn(k)−1)

))
≤ F

(
max{p(yn(k)−1, ym(k)), p(xn(k)−1, xm(k)), p(yn(k)−1, ym(k))}

)
.

and

τ + F
(
p(zm(k)+1, zn(k))

)
= τ + F

(
p
(
T (zm(k), ym(k), xm(k)), T (zn(k)−1, yn(k)−1, xn(k)−1)

))
≤ F

(
max{p(zm(k), zn(k)−1), p(yn(k)−1, ym(k)), p(xn(k)−1, xm(k))}

)
.

Therefore

τ + max{F
(
p(xm(k)+1, xn(k))

)
, F
(
p(yn(k), ym(k)+1)

)
, F
(
p(zn(k), zm(k)+1)

)
}

≤ F
(

max{p(xn(k)−1, xm(k)), p(yn(k)−1, ym(k)), p(zn(k)−1, zm(k))}
)
.

Letting k →∞ and using (23), we arrive at

τ + F (ε) ≤ F (ε).

7
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This yields ε = 0, this is a contradiction. Hence, we have proved that

lim
m,n→∞

max{p(xm, xn), p(yn, ym), p(zn, zm)} = 0.

This implies that

lim
m,n→∞

p(xm, xn) = 0, lim
m,n→∞

p(ym, yn) = 0 and lim
m,n→∞

p(zm, zn) = 0. (24)

Since (X, p) is 0-complete partial metric space, we can find u, v, w ∈ X such that

lim
n→∞

p(u, xn) = p(u, u) = 0

lim
n→∞

p(v, yn) = p(v, v) = 0

lim
n→∞

p(w, zn) = p(w,w) = 0.

Now, we show that u = T (u, v, w), v = T (v, u, v) and w = T (w, v, u). Indeed, since u ≤ u, v ≥ v and w ≤ w, we have

τ + F
(
p(T (u, v, w), T (u, v, w))

)
≤ F

(
max{p(u, u), p(v, v), p(w,w)}

)
= F (0) = −∞.

This implies that p(T (u, v, w), T (u, v, w)) = 0. Since xn → u, yn → v , zn → w as n→∞ in (X, p) and T is continuous, we

have T (xn, yn, zn)→ T (u, v, w) in (X, p), this mean that

lim
n→∞

p(xn+1, T (u, v, w)) = lim
n→∞

p(T (xn, yn, zn), T (u, v, w)) = 0.

Now, we have

p(u, T (u, v, w)) ≤ p(u, xn+1) + p(xn+1, T (u, v, w))− p(xn+1, xn+1).

Letting n→∞, we get that p(u, T (u, v, w)) = 0, and so u = T (u, v, w). By the same argument, we also have p(v, T (v, u, v)) =

0, and so v = T (v, u, v) also p(w, T (w, v, u)) = 0, and so w = T (w, v, u).

In the next theorem, we omit the continuity hypothesis of T .

Theorem 3.2. Let (X,≤) be a partially ordered set and suppose there exists a partial metric p on X such that (X, p) is a

0-complete partial metric space. Let T : X ×X ×X → X be a mapping having the mixed monotone property on X. Assume

that:

(1).

τ + F
(
p(T (x, y, z), T (u, v, w))

)
≤ F

(
max

{
p(x, u), p(y, v), p(z, w)}

)
(25)

for all x ≤ u, y ≥ v, z ≤ w, for some F ∈ F and τ > 0.

(2). There are x0, y0, z0 ∈ X such that x0 ≤ T (x0, y0, z0), y0 ≥ T (y0, x0, y0) and z0 ≤ T (z0, y0, x0).

Also, assume that X has the properties:

(i). If a non-decreasing sequence {xn} and {zn} in X converges to x then xn ≤ x and zn ≤ z for all n.

(ii). If a non-increasing sequence {yn} in X converges to y then yn ≥ y for all n.

Then T has a tripled fixed point, that is, there exist x, y, z ∈ X such that x = T (x, y, z), y = T (y, x, y), z = T (z, y, x).

8
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Proof. Following the line of the proof of Theorem 3.1. Hence, we only need show that

lim
n→∞

p(xn+1, F (u, v, w)) = lim
n→∞

p(T (xn, yn, zn), T (u, v, w)) = 0.

Under conditions (i) and (ii). Indeed, we have xn ≤ u, yn ≥ v and zn ≤ w for all n. Applying (7), we have

τ + F (p(xn+1, T (u, v, w))) = τ + F (p(F (xn, yn, zn), F (u, v, w)))

≤ F (max{p(xn, u), p(yn, v), p(zn, w)}).

Letting n→∞, we obtain

lim
n→∞

F (p(xn+1, T (u, v, w))) = −∞.

Hence

lim
n→∞

p(xn+1, F (u, v, w)) = lim
n→∞

p(T (xn, yn, zn), T (u, v, w)) = 0.

We easily get the following corollary.

Corollary 3.3. Let (X,≤) be a partially ordered set and suppose there exists a partial metric p on X such that (X, p) is a

0- complete partial metric space. Let T : X×X×X → X be a mapping having the mixed monotone property on X. Assume

that:

(1).

τ + F
(
p(T (x, y, z), T (u, v, w))

)
≤ F

(p(x, u)) + p(y, v) + p(z, w)

3

)
(26)

for all x ≤ u, y ≥ v, z ≤ w, for some F ∈ F and τ > 0.

(2). There are x0, y0, z0 ∈ X such that x0 ≤ T (x0, y0, z0), y0 ≥ T (y0, x0, y0), z0 ≤ T (z0, y0, x0).

Also, assume either

(a). T is continuous; or

(b). X has the properties:

(i). If a non-decreasing sequence {xn} and {zn} in X converges to x and z respectively then xn ≤ x and zn ≤ z for

all n.

(ii). If a non-increasing sequence {yn} in X converges to y then yn ≥ y for all n.

Then T has a Tripled fixed point, that is, there exist x, y ∈ X such that x = T (x, y), y = T (y, x).

Proof. By the fact that

p(x, u) + p(y, v) + p(z, w)

3
≤ max{p(x, u), p(y, v), p(z, w)}

for all x, y, z, u, v, w ∈ X, the condition (26) implies the condition (7). Therefore, the result is desired from Theorem 3.1

and Theorem 3.2.

The following corollary state that T has a fixed point the under certain condition.

9



A Solution for the Non-Cooperative Equilibrium Problem of Three Person via Fixed Point Theory

Corollary 3.4. In addition to the hypotheses of Corollary 3.3, if x0 and y0 are comparable then T has a unique fixed point,

that is, there exists x ∈ X such that T (x, x, x) = x.

Proof. Since x0, y0, z0 are comparable, we have x0 ≥ y0 ≥ z0 or x0 ≤ y0 ≤ z0. Suppose we are in the first case. Then, by

the mixed monotone property of T , we have

x1 = T (x0, y0, z0) ≥ T (y0, x0, y0) = y1,

and, hence, by induction one obtains

xn ≥ yn ≥ zn for all n ≥ 0.

Now, since x = limn→∞ xn+1, y = limn→∞ yn+1, z = limn→∞ zn+1 we have p(x, y) = lim
n→∞

p(xn+1, yn+1). On the other hand,

we have

τ + F
(
p(xn+1, yn+1)

)
= τ + F

(
p
(
T (xn, yn, zn), T (yn, xn, yn)

))
≤ F

(
max{(p(xn, xn)), p(yn, yn), p(zn, zn)}

)
.

(27)

Following the Lemma 2.7, we also have

lim
n→∞

p(xn, xn) = lim
n→∞

p(yn, yn) = lim
n→∞

p(zn, zn) = 0.

Letting n→∞ in (27), we arrive at lim
n→∞

p(xn+1, yn+1) = 0. Therefore p(x, y) = 0, or x = y = z. Hence T (x, x, x) = x.

Remark 3.5. We underline the fact that the tripled fixed point theorem in this paper can be observed from the fixed point

result of single mapping by using the techniques in [32–34]. On the other hand, we prefer to keep the proofs for the sake of

the completeness.

4. Main Result: Non-cooperative Equilibrium Problem for Three
Players

In this section, by using tripled fixed point theorems, we shall show that a three person game has a non-cooperative

equilibrium. The reader may consult excellent sources of general concepts of three person games in [24] and [23]. Let (S, p)

be a 0-complete partial metric space. Suppose that S has a partially order relation ≤. We consider a three person game G

in normal form consists of following data:

(1). S1 = S, S2 = S and S3 = S are strategies for player 1 and respectively player 2, player 3;

(2). The set U = S1 × S2 × S3 of allowed strategies pairs;

(3). The biloss operator

L : U → R3

(s1, s2, s3) 7→ (L1(s1, s2, s3);L2(s1, s2, s3);L3(s1, s2, s3)),

(28)

where Li(s1, s2) is the loss of player i if the strategies s1, s2 and s3 are played.

A pair (s1, s2, s3) ∈ U is called a non-cooperative equilibrium if

L1(s1, s2, s3) ≤ L1(s1, s2, s3)), ∀s1 ∈ S1

L2(s1, s2, s3) ≤ L2(s1, s2, s3)), ∀s2 ∈ S2

L3(s1, s2, s3) ≤ L2(s1, s2, s3)), ∀s3 ∈ S3.

(29)

10
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This mean that

L1(s1, s2, s3) = min
s1∈S1

L1(s1, s2, s3))

L2(s1, s2, s3) = min
s2∈S2

L2(s1, s2, s3))

L3(s1, s2, s3) = min
s3∈S3

L2(s1, s2, s3)).

(30)

To see what strategy pairs are non- cooperative equilibria, one consider the optimal decision rules C1, C2, C3 such that

L1(C1(s3), s2, s3) = min
s1∈S1

L1(s1, s2, s3)

L2(s1, C2(s2), s3) = min
s2∈S2

L2(s1, s2, s3)

L3(s1, s2, C3(s1)) = min
s3∈S3

L3(s1, s2, s3).

(31)

Then any fixed point of the map

(s1, s2, s3) 7→
(
C1(s3), C2(s2), C3(s1)

)
is a non- cooperative equilibrium.

In this section, we shall consider that C1(s) = C2(s) = C3(s) for all s ∈ S. It is easy to see that if L1(s1, s2, s3) =

L2(s1, s2, s3) = L3(s1, s2, s3) for all (s1, s2, s3) ∈ S1 × S2 × S3 then C1(s) = C2(s) = C3(s) and it is not difficult to give

example that C1(s) = C2(s) = C3(s) in the case L1(s1, s2, s3) 6= L2(s1, s2, s3) 6= L3(s1, s2, s3). Let T : S1 × S2 × S3 → R be

the map defined by

T (x, y, z) = C(z)

for all x, y ∈ S. Suppose that T has tripled fixed point (a, b, c) ∈ R. It follows that

a = T (a, b, c) = C(c)

b = T (b, a, b) = C(b)

c = T (c, b, a) = C(a).

(32)

and (a, b, c) is fixed point of the map (s1, s2, s3) 7→
(
C(s3), C(s2), C(s1)

)
. Therefore, the existence tripled fixed point of T

implies a non- cooperative equilibrium. Hence, we can reduce the process of proving the existence of a non- cooperative

equilibrium to giving existence tripled fixed point of T .

Theorem 4.1. Let S and G be as the above mention. Suppose that the optimal decision rule is monotone continuous

functions C which satisfies

(1).

τ + F
(
p(C(x), C(y))

)
≤ F (p(x, y)) (33)

for all x, y ∈ S and y ≥ x, for some F ∈ F and τ > 0.

(2). There are x0, y0, z0 ∈ R+ such that x0 ≤ C(y0), y0 ≥ C(z0).

Then, three person game G has a non- cooperative equilibrium.

Proof. Let T : S × S × S → S defined by

T (x, y, z) = C(z)

11
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for all x, y, z ∈ S. Since C is continuous, we have that T is continuous. Since C is monotone, it is easy to check that T have

the mixed monotone property on X. For all x, y, z, u, v, w ∈ R+, with x ≤ u, y ≥ v, z ≤ w we have

p(T (x, y, z), T (u, v, w)) = p(C(z), C(w)).

Therefore, the condition (7) reduces to

τ + F
(
p(C(z), C(w))

)
≤ F

(
max

{
p(x, u), p(y, v), p(z, w)}

)
, (34)

for every x ≤ u, y ≥ v and z ≤ w. Since

max{p(x, u), p(y, v), p(z, w)} ≥ p(z, w)

and F is increasing, we get that the condition (33) implies to (34). Applying Theorem 3.1, we conclude that T has a tripled

fixed point. This implies that the three person games G has a non- cooperative equilibrium.

Since every metric is partial metric, we immediately obtain the following corollary.

Corollary 4.2. Let G be as the above mention. Suppose that (S, d) is a metric space and the optimal decision rule is

monotone continuous functions C which satisfies

(1).

τ + F
(
d(C(x), C(y))

)
≤ F (d(x, y)) (35)

for all x, y ∈ S and x < y, for some F ∈ F and τ > 0.

(2). There are x0, y0, z0 ∈ R+ such that x0 ≤ C(y0), y0 ≥ C(z0).

Then, three person game G has a non- cooperative equilibrium.

Now we shall give an example to show that Corollary 4.2 is effective.

Example 4.3. Consider S = R+ endowed with the metric d(x, y) = |x − y| for all x, y ∈ S. Let G be a three person game

with triloss operator

L1(s1, s2, s3) = s21(1 + s2 + s3)e−τ − 3s1

L2(s1, s2, s3) = s22(1 + s1 + s3)e−τ − 3s2

L3(s1, s2, s3) = s23(1 + s1 + s2)e−τ − 3s3

where (s1, s2, s3) ∈ R3
+ and a given τ > 0. It is easy to compute that the optimal decision rules C1, C2, C3 such that of G

C1(s3) =
e−τ

1 + s3
,

C2(s2) =
e−τ

1 + s2
,

C3(s1) =
e−τ

1 + s1
,

where s1, s2, s3 ∈ R+. We have C1(s) = C2(s) = C3(s) for all s ∈ R+, and C is continuous map. We need show that C

satisfies all conditions of Corollary 4.2. We have

d(C(x), C(y)) = e−τ
∣∣∣ 1

1 + x
−

1

1 + y

∣∣∣ ≤ e−τ |x− y| = e−τd(x, y)

12
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for all x, y ∈ R+. By passing to logarithms, we arrive at

τ + ln d(C(x), C(y)) ≤ ln d(x, y)

for all x 6= y. Since F (x) = lnx ∈ F we can deduce that C satisfies 1) in Corollary 4.2. Choosing x0 = 0, we have that

C(x0) = e−τ .

Let y0 = 1, we have y0 ≥ C(x0). On the other hand x0 = 0 ≤ C(y0) =
e−τ

3
. Therefore, C satisfies all conditions of Corollary

4.2. Applying this corollary, we get that three person game G has a non- cooperative equilibrium.

5. Application to Nonlinear Integral Equations

In this section, we study the existence of unique solution of nonlinear integral equations, as an application of the fixed point

theorem proved in Section 3.

Let us consider the following integral equation

x(t) = h(t) +

∫ t

0

[K1(t, s) +K2(t, s) +K3(t, s)]
(
f(s, x(s)) + g(s, x(s) + j(s, x(s)

)
ds, (36)

where the unknown functions x(t) takes the real values.

Let X = C([0,K]) be the space of all real continuous functions defined on [0,K]. It well known that C([0,K]) endowed with

the metric

d(x, y) = ‖x− y‖ = max
t∈[0,K]

|x(t)− y(t)|

is a complete metric space. By a solution of the (36), we mean a continuous function x ∈ X that satisfies the equation (36)

on [0,K]. By certain conditions on K1,K2,K3, f, g, j and using the results of previous section, we will prove that (36) has

a unique solution. For this, note that X can be equipped with the partial order � given by

x, y ∈ X, x � y ⇐⇒
(
x(t) ≤ y(t) ∀t ∈ [0,K] and ‖x‖, ‖y‖ ≤ 1

)
or x(t) = y(t) ∀ t ∈ [0,K]. (37)

We assume that the functions K1,K2,K3, f, g, j fulfill the following conditions.

Assumption 5.1.

(A). f, g, j ∈ C([0,K]×R), h ∈ X and K1,K2,K3 ∈ C([0,K]× [0,K]) such that K1(t, s) ≥ 0, K2(t, s) ≤ 0 and K3(t, s) ≥ 0

for all t, s ≥ 0;

(B). f(t, .), j(t, .) : R→ R is increasing for all t ∈ [0,K]; g(t, .) : R→ R is decreasing for all t ∈ [0,K];

(C). There exist τ ∈ [1,∞) such that

0 ≤ f(t, x)− f(t, y) ≤ τe−τ x− y
3

, ∀x ≥ y,

−τe−τ x− y
3
≤ g(t, x)− g(t, y) ≤ 0, ∀x ≥ y

and 0 ≤ j(t, x)− j(t, y) ≤ τe−τ x− y
3

, ∀x ≥ y

13
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(D). { max
t,s∈[0,K]

|K1(t, s)−K2(t, s)|, max
t,s∈[0,K]

|K2(t, s)−K3(t, s)|, max
t,s∈[0,K]

|K3(t, s)−K1(t, s)|} ≤ 1.

Define T : X ×X ×X → X by

T (x, y, z)(t) = h(t) +

∫ t

0

K1(t, s)
(
f(s, x(s)) + g(s, y(s) + j(s, z(s))

)
ds

+

∫ t

0

K2(t, s)
(
f(s, y(s)) + g(s, x(s)) + j(s, y(s))

)
ds

+

∫ t

0

K3(t, s)
(
f(s, z(s)) + g(s, y(s)) + j(s, x(s))

)
ds

for all t ∈ [0,K].

Definition 5.2. An element (α, β, γ) ∈ C([0,K]×C[0,K]×C[0,K]) is a tripled normal lower and a normal upper solution

of the integral equation (36) if α � β and α � T (α, β, γ), β � T (β, α, β) and γ � T (γ, β, α).

Theorem 5.3. Suppose that Assumption 5.1 is fulfilled. Then the existence of a Tripled normal lower and normal upper

solution for (36) provides the existence of a unique solution of (36) in C([0,K]).

Proof. Suppose {un} is a monotone non-decreasing sequence in X that converges to u ∈ X. Then for every t ∈ [0,K], the

sequence of real numbers u1(t) ≤ u2(t) ≤ ... ≤ un(t) ≤ ... converges to u(t). Moreover, since the normed map is continuous,

we can deduce that ‖u‖ ≤ 1 if provided ‖un‖ ≤ 1 for all n. Therefore, for every t ∈ [0,K], n ∈ N, un(t) ≤ u(t). Hence

un ≤ u, for all n ∈ N.

Similarly, we can verify that limit v(t) of a monotone non-increasing sequence vn(t) in X is a lower bound for all elements

in the sequence. That is, v ≤ vn for all n. Hence, the condition (b) in Corollary 3.3 holds. Also we can verify that limit

w(t) of a monotone non-decreasing sequence wn(t) in X is a upper bound for all elements in the sequence. That is, w ≥ wn

for all n. Hence, the condition (b) in Corollary 3.3 holds. For x ∈ X, we defined ‖x‖τ = maxt∈[0,K] |x(t)|e−τt, where τ ≥ 1

is chosen arbitrary. It is easy to check that ‖.‖τ is a norm equivalent to the maximum norm in X and X endowed with the

metric dτ defined by

dτ (x, y) = ‖x− y‖τ = max
t∈[0,K]

{|x(t)− y(t)|e−τt}

for all x, y ∈ X is a complete metric space. Now, consider X endowed with partial metric given by

pτ (x, y) =


dτ (x, y) if ‖x‖τ ≤ 1, ‖y‖τ ≤ 1

dτ (x, y) + τ otherwise.

(38)

It is easy to see that (X, pτ ) is a 0-complete partial metric space but is not complete (See [22]). We recall that T :

X ×X ×X → X by

T (x, y, z)(t) = h(t) +

∫ t

0

K1(t, s)
(
f(s, x(s)) + g(s, y(s) + j(s, z(s))

)
ds

+

∫ t

0

K2(t, s)
(
f(s, y(s)) + g(s, x(s)) + j(s, y(s))

)
ds

+

∫ t

0

K3(t, s)
(
f(s, z(s)) + g(s, y(s)) + j(s, x(s))

)
ds

for all t ∈ [0,K]. Next, we show that T has the mixed monotone property. Indeed, for x1, x2 ∈ C([0,K]) and x1 ≤ x2 that

is x1(t) ≤ x2(t) for every t ∈ [0,K], we have

T (x1, y, z)(t)− T (x2, y, z)(t) =

∫ t

0

K1(t, s)
[
f(s, x1(s)) + g(s, y(s)) + j(s, z(s))

]
ds

14
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+

∫ t

0

K2(t, s)
[
f(s, y(s)) + g(s, x1(s)) + j(s, y(s))

]
ds

+

∫ t

0

K3(t, s)
[
f(s, z(s)) + g(s, y(s)) + j(s, x1(s))

]
ds+ h(t)

−
∫ t

0

K1(t, s)
[
f(s, x2(s)) + g(s, y(s)) + j(s, z(s))

]
ds

−
∫ t

0

K2(t, s)
[
f(s, y(s)) + g(s, x2(s)) + j(s, y(s))

]
ds

−
∫ t

0

K3(t, s)
[
f(s, z(s)) + g(s, y(s)) + j(s, x2(s))

]
ds− h(t)

=

∫ t

0

K1(t, s)
[
f(s, x1(s))− f(s, x2(s))

]
ds

+

∫ t

0

K2(t, s)
[
g(s, x1(s))− g(s, x2(s))

]
ds

+

∫ t

0

K3(t, s)
[
j(s, x1(s))− j(s, x2(s))

]
ds

≤ 0

for every t ∈ [0,K], by Assumption 5.1. This yields T (x1, y)(t) ≤ T (x2, y)(t) for every t ∈ [0,K], that is T (x1, y, z) ≤

T (x2, y, z). By the same computation, we arrive at T (x, y1, z) ≤ T (x, y2, z) if y1 ≥ y2 and T (x, y, z1) ≤ T (x, y, z2) if z1 ≤ z2.

Hence, T has the mixed monotone property.

Now, for x ≥ u, y ≤ v and z ≤ w, we have

|(T (x, y, z)(t)− T (u, v, w)(t)| =
∣∣∣[ ∫ t

0

K1(t, s)
(
f(s, x(s)) + g(s, y(s)) + j(s, z(s))

)
ds

+

∫ t

0

K2(t, s)
(
f(s, y(s)) + g(s, x(s)) + j(s, x(s))

)
ds

+

∫ t

0

K3(t, s)
(
f(s, z(s)) + g(s, y(s)) + j(s, x(s))

)
ds+ h(t)

]
−
[ ∫ t

0

K1(t, s)
(
f(s, u(s)) + g(s, v(s)) + j(s, w(s))

)
ds

+

∫ t

0

K2(t, s)
(
f(s, v(s)) + g(s, u(s)) + j(s, v(s))

)
ds

+

∫ t

0

K3(t, s)
(
f(s, w(s)) + g(s, v(s)) + j(s, u(s))

)
ds+ h(t)

]∣∣∣
=
∣∣∣ ∫ t

0

K1(t, s)
[(
f(s, x(s))− f(s, u(s))

)
+
(
g(s, y(s))− g(s, v(s))

)
+
(
j(s, z(s))− j(s, w(s))

)]
ds

+

∫ t

0

K2(t, s)
[(
f(s, y(s))− f(s, v(s))

)
+
(
g(s, x(s))− g(s, u(s))

)
+
(
j(s, y(s))− j(s, v(s))

)]
ds

+

∫ t

0

K3(t, s)
[(
f(s, z(s))− f(s, w(s))

)
+
(
g(s, y(s))− g(s, v(s))

)
+
(
j(s, x(s))− j(s, u(s))

)]
ds|

=
∣∣∣ ∫ t

0

K1(t, s)
[(
f(s, x(s))− f(s, u(s))

)
−
(
g(s, v(s))− g(s, y(s))

)
−
(
j(s, z(s))− j(s, w(s))

)]
ds

−
∫ t

0

K2(t, s)
[(
f(s, v(s))− f(s, y(s))

)
−
(
g(s, x(s))− g(s, u(s))

)
−
(
j(s, v(s))− j(s, y(s))

)]
ds
∣∣∣

≤
∣∣∣ ∫ t

0

K1(t, s)τe−τ
[x(s)− u(s)

3
+
v(s)− y(s)

3
+
z(s)− w(s)

3

]
ds

−
∫ t

0

K2(t, s)τe−τ
[v(s)− y(s)

3
+
x(s)− u(s)

3
+
v(s)− y(s)

3

]
ds
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−
∫ t

0

K3(t, s)τe−τ
[z(s)− w(s)

3
+
v(s)− y(s)

3
+
x(s)− u(s)

3

]
ds
∣∣∣

≤ τe−τ
∫ t

0

∣∣[K1(t, s)−K2(t, s)−K3(t, s)
][x(s)− u(s)

3
+
v(s)− y(s)

3
+
z(s)− w(s)

3

]∣∣ds
= τe−τ

∫ t

0

∣∣K1(t, s)−K2(t, s)−K3(t, s)
∣∣eτs[ |x(s)− u(s)|e−τs

3
+
|v(s)− y(s)|e−τs

3
+
|z(s)− w(s)|e−τs

3

]
ds

≤ τe−τ
∫ t

0

max
t,s∈[0,K]

∣∣K1(t, s)−K2(t, s)−K3(t, s)|eτs
[‖x− u‖τ

3
+
‖y − v‖τ

3

‖z − w‖τ
3

]
ds

≤ τe−τ
eτt

τ

[‖x− u‖τ
3

+
‖y − v‖τ

3
+
‖z − w‖τ

3

]
.

It follows that

|T (x, y, z)(t)− T (u, v, w)(t)|e−τt ≤ e−τ
[‖x− u‖τ

3
+
‖y − v‖τ

3
+
‖z − w‖τ

3

]
.

Hence, for all x, y, z, u, v, w ∈ X such that x ≥ u, y ≤ v and z ≥ w, since ‖x‖τ , ‖y‖τ , ‖z‖τ , ‖u‖τ , ‖v‖τ , ‖w‖τ ≤ 1, we have

pτ
(
T (x, y, z), T (u, v, w)

)
≤ e−τ 1

3

[
pτ (x, u) + pτ (y, v) + pτ (z, w)

]
By passing to logarithms, we arrive at

τ + ln pτ
(
T (x, y, z), T (u, v, w)

)
≤ ln

(pτ (x, u) + pτ (y, v) + pτ (z, w)

3

)
.

Since F (x) = lnx ∈ F , we conclude that T satisfies the condition (26). Now, let us (α, β, γ) be a tripled normal lower and

normal upper solution of the integral equation of (36). Then, we have α � β, β � γ

α � T (α, β, γ), β � T (β, α, β) and γ � T (γ, β, α).

Finally, applying Corollary 3.4, we can conclude that T has a fixed point x. Hence T (x, x, x) = x and x is an unique solution

of the equation (36).
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