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Abstract: In the present paper, we find lower bound of functional mean code word length in fuzzy set with existing knowledge of
different code word length. We know that lower bound of functional mean code word length is measure of fuzzy entropy which
satisfy all different properties of itself. By finding lower bounds of different mean code word length, different measure of
entropies in fuzzy set can be found which are very important in present .
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1. INTRODUCTION
Let (Xy, XoX3...... Xn) be n inputs which have to be encoded in terms of an alphabet of size D. Let 111, 1s........ 1, be the n codeword
lengths and let py p,........ pn be the probabilities ,the arithmetic mean L of codeword length is

L= ZIi B (1)

i=1

n
lies between S(P) and S(P)+1,where S(P) is given by S(P) = —z p; log, p;
i=1
After this Campbell considered more general exponential mean codeword length
(1 )

La:—log{Zp, @ },a>0,a¢l

and showed that subject to (2) the minimum value of L lies between R (P) and

R,(P)+1 where R, (P) =1L|0gz P, >0, #1
—-a i=1

Extending the scope of study, Kapur has several mean codeword length .

One of Kapur’s mean codeword length is

> f(p)pe

i=1

R log -

ST Se)

Here we introduced lower bound of Kapur’s mean codeword length with the help of Kraft’s inequality in terms of fuzzy set.
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1. MAIN RESULT
LOWER BOUND OF KAPUR ‘S MEAN CODEWORD LENGTH L; SUBJECT TO KRAFT’S INEQUALITY

We know that according to Kapur’s mean codeword length given in equation (1) ,the Fuzzy Mean Codeword length is

1 i{ f (‘LlA (Xi )) + f (1— :uA(Xi ))} D(oc—l)li
L, = 1Iog i
a —

{1 () + £ @ 0, (6)

n
Now, we find the lower bound of this mean codeword length with respect to Kraft’s inequalityz D" =k<1
i=1

suppose { (1, (%) + F(L- 1, (X))} = A & D™ =,

C (I-a)
. Zl Ay,

Then eq"(5.2) & eq"(5.3) become L' = log| &=—|......... (5)

n

—Z_)Ay(“

== +1=0

n

Z Ay

=AY =AD Ay
i=1

= AD™ =23 AV
i=1

A% o Y
= D :(l;AyiaJ
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o A Yoo y,
o G G (e
= N =D _(g;Ayi j
" AV
N Ai% _ AZ}(/Z _ :A_%: ;A
D Dk o _Zn: -
> AV
= Ai% = Az% = A% — ;Ai
D& D o ”
A
Minimum value of D" = y, = :(A‘
YA

i=1

Substituting this value in equation(5.4), we get minimum value of L;

n Y
DAl
. i=1 Z Aﬁ o
MinL! = log =

a-1 Z

i=1
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—Iog(iA%j—logk

o [ {F )+ Fa-m o) 1 ne
i=1 n o-1 kafl

Thus Min L! lies between M [ (1, (%)) and M [ (1, (%)) +1

i { fuy (%) + F@Q— (X ))}%

WhereM [ (1, (%)) = —~%—log| 2 — | .. (6)
a-1 n

which is generalized measure of entropy of order ¢ for any function in terms of fuzzy set.

Generalized measure of entropy M ' (1, (X)) has different value for different function of
Ha (%)
suppose  f (12, (X)) = 14 (%) then by eq(6)

i{uf(xi) + (L pa (X, ))ﬁ}%

log| &&2— 0 ... 7
1 g - (7)

M. (0 (%)) = a"‘

a<lp>1

1. PROPERTIES OFM”I (‘uA(Xi))
1) M (u,(x)) isthe minimum value of an exponentiated mean so it will always be
non — negative.
2) M) (u,(x)) isminimum iff A is a non fuzzy set.

For 1, (%) = O,M; (ua(%))=0

and when 1, (%) =1 weget M (1, (%)) =0
3) When A is most fuzzy set, and then M | (12, (%)) is maximum.
M, (1 (%) _

For maximum,
Ol (Xi)
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We can write eq” (5.6) as
n

M, (1, (%) =ﬁlog(2{uf (xi>>+(1—uA(xi»ﬂ}%'J—ﬁlogn

i=1

M (1, () _ B | (a ™ 06) == 0D { (x)) + (- w )}
auA(Xi) a-1 Zn:{,uf(xi))'i_(l_,uA(Xi))ﬁ}%

i=1

M, (14 (%))

— 0 givi 0w Y_ (1— )L
a/,tA(Xi) _Og €s (:uA (XI) (1 :uA(Xl)) O

= ,U//AH (%) = (@, (% )
= pa(%) =1— 1, (%)

1
= :uA(Xi):E

Soat t,(X) = % M [ (1, (%)) has maximum or minimum value.

For this, we differentiate eq"(5.7) again

ML U0 BB (o) 4 1 0, (1)) 0D g G}
a(:uA(Xi )) a-1 Z{,uf (Xi ))+(1—IUA(Xi))ﬁ}%
P00 + (A ()
+ L (,uf\H(Xi)_(:I-_,uA(Xi))/H)i {‘u s }
a-1 dx

n

PRV EXEINCHE

i=1

}%
Which is less than zero forae <1, > 1

Soat (X)) = E M [ (12, (%)) has maximum value.

2

(M (4], =2 tog 2
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4) since M (1, (X)) is an increasing function of 11, (x,)for 0 < g, (X)) < %.i.e
(M (1, (x))/ 115 (x) =0} =0
B -

and{Mof (#A(Xi))/#A(Xi) =;} =1—1Iog2 >0fora <1, p>1
-

f
5) Since M., (2 (%)) is decreasing function of Ha (%) tor %S uy(x) <1

{M; (114 (% »/ (%) = ;} - L= 10g2ng

(M (1 (%)) 110 (x) =1} =0

So, M (1,(X)) is a concave function.

f
6) M (ua (%)) does not change when Ha (%) is replaced by 1= pa (%)
M, (12 (6)) = M, (1= 2, (%))

Now we study the monotonic behavior of M | (12, (X)) . For this, different values of M ' (2, (X)) by parameters has

been calculated and further the generalized measure has been presented graphically.
We have from eq" (7)

Zn {/l£ (Xi) +(1- #A(Xi))ﬁ}%

M ) = —% _log| 4= wherear <1, >1& a #0
a (:uA ( |)) a — 1 g n
1
a) Suppose o :E"B =2
f
:uA(Xi M, (:uA(Xi)) 0.7 -
0 0 0.6
0.1 0.172
0.2 0.334 0.5
0.3 0.473 0.4
0.4 0.568 M(Ha(X))
05 0.602 0.3
0.6 0.568 0.2
0.7 0.473
0.8 0.334 01
0.9 0.172 0 . |
1 0 0 0.5 ) 1 15
Table 1.1 Figure 1.1
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f
:uA(Xi) M, (,UA(Xi))
0.25 -
0 0
0.1 0.057 0.2
0.2 0.111
0.15
0.3 0.158 M(A)
0.4 0.189 01
05 0.201
0.6 0.189 0.05
0.7 0.158
0 .
0.8 0.111 L5
0.9 0.057 1)
1 0
Table 1.2 Figure 1.2
1a (%) M, (14 (%)) 0.45 -
0.4
0 0
0.1 0.091 0.35
0.2 0.189 0.3
0.3 0.288 " 0.25
0.4 0.369 M)
05 0.401
0.15
0.6 0.369 01
0.7 0.288 0.05
0.8 0.189 0 .
0.9 0.091 LA (X) 1.5
1 0
Tablel.3 Figurel.3
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=3
f

m, (%) M, (1, (%))
0 0 0.35 -
0.1 0.069 0.3
0.2 0.142

0.25
0.3 0.216
0.4 0.276 0.2
05 0.301 0.5
0.6 0.276 01
0.7 0.216

0.05
0.8 0.142
0.9 0.069 0 1'2
1 0

Table 1.4 Figure 1.4

Thus, we found that value of M [ (1, (X)) given by eq"(7) satisfy all properties of fuzzy entropy. Also by assuming different

values of T (u, (X)), we get different fuzzy mean codeword length whose lower bounds are expressed as fuzzy entropies.

IV.  CONCLUSION
In this paper , by developing new fuzzy code word length ,we found lower bound of this fuzzy code word length which are
expressed as measure of fuzzy entropies . We get this by existing knowledge. This generalisation are very important in present
.Also we have proved properties of above fuzzy entropy and with the help of data, we have represented it graphically.
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