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Abstract— A distributed implementation of Dang’s Fixed Point algorithm is proposed for searching one Nash 

equilibrium of a finite 𝑛 −person game in normal form. In this paper, the problem consists of two 

subproblems. One is changing the problem form to a mixed 0-1 linear programming form. This process is 

derived from applications of the properties of pure strategy and multi linear terms in the payoff function. The 

other subproblem is to solve the 0 − 1 linear programming generated in the former subproblem. A distributed 

computation network which is based on the Dang’s Fixed-Point method is built to solve this 0 − 1 linear 

programming.  

INTRODUCTION  

This paper is concerned with the distributed computation of one pure-strategy Nash equilibrium of a finite n-

person game in normal form. To tackle this problem, Wu’s method in [19], [20] is used to reformulate the 

Nash equilibrium problem to a mixed 0-1 linear programming form by exploiting the properties of pure 

strategy and multilinear terms in the payoff functions. One feasible solution of the mixed 0-1 linear program 

yields one pure-strategy Nash equilibrium. In the next step, a distributed computation network is built based on 

Dang’s Fixed-Point algorithm [21], [22] to solve the mixed 0-1 linear programming. Numerical results show 

that the distributed method is promising and it can be easily extended to other NP-hard problems. In distributed 

computation network, a problem is divided into many subproblems, each of which can be solved in different 

computers which communicate with each other by message passing. The computation speed is influenced by 

the number of the computers in the network. Distributed models can be classified into simple model and 

interactive model, which are illustrated in Fig.1 and Fig.2  respectively 
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The first model is called simple distributed model. In this model, all the slave computers can only 

communicate with the master computer. The task is scheduled and divided into several smaller subproblems by 

the master computer. And then each subproblem is sent to a different slave computer by the master computer . 

Finally, the master computer receives the result from the slaves and output it. Compared with the simple 

model, the interactive model is more advanced. In this model, the slave computers also could communicate 

with each other by message passing. Therefore, if one slave computer finishes its work, it can help others. The 

details of the distributed computation will be presented in the section IV.  

CHANGING THE SEARCHING NASH EQUILIBRIUM PROBLEM TO A MIXED 0-1 LINEAR 

PROGRAMMING FORM 

Let 𝑁 =  {1, 2, . . . , 𝑛} be the set of players. The pure strategy set of player 𝑖 ∈  𝑁 is denoted by 𝑆𝑖  =

 {𝑠𝑗
𝑖 | 𝑗 ∈  𝑀𝑖} with 𝑀𝑖  =  {1, 2, . . . , 𝑚𝑖}.  

Given 𝑆𝑖 with 𝑖 ∈  𝑁, the set of all pure strategy profiles is 𝑆 = ∏ 𝑆𝑖𝑛
𝑖=1 .  

We denote the payoff function of player 𝑖 ∈  𝑁 by 𝑢𝑖 ∶  𝑆 →  𝑅. For 𝑖 ∈  𝑁, let 𝑆−𝑖   =  ∏ 𝑆𝑘𝑘∈𝑁\{𝑖} . Then, 

𝑠 =  (𝑠 𝑗1
1  , 𝑠 𝑗2

2  , . . . , , 𝑠 𝑗𝑛
𝑛  )  ∈  𝑆 can be rewritten as 𝑠 =  (𝑠 𝑗𝑖

𝑖  , 𝑠−𝑖  ) with 𝑠−𝑖  =

 (𝑠 𝑗1
1  , . . . , 𝑠 𝑗𝑖−1

𝑖−1  , 𝑠 𝑗𝑖+1
𝑖+1  , . . . , 𝑠 𝑗𝑛

𝑛 )  ∈  𝑆−𝑖 . 

 A mixed strategy of player 𝑖 is a probability distribution on 𝑆𝑖 denoted by 𝑥𝑖   = ( 𝑥1
𝑖  , 𝑥2

𝑖  , . . . , 𝑥𝑚𝑖
𝑖  ).   

Let 𝑋𝑖 be the set of all mixed strategies of player 𝑖. Then, 𝑋𝑖  =  {𝑥𝑖  =  (𝑥1
𝑖  , 𝑥2

𝑖  , . . . , 𝑥𝑚𝑖
𝑖 ) ∈  𝑅+

𝑚𝑖  | Σ 𝑗=1 
𝑚𝑖 𝑥𝑗

𝑖  =

 1}  . Thus, for 𝑥𝑖  ∈  𝑋𝑖 , the probability assigned to pure strategy 𝑠𝑗
𝑖  ∈  𝑆𝑖 is equal to 𝑥𝑗

𝑖  .  

Given 𝑋𝑖 with 𝑖 ∈  𝑁, the set of all mixed strategy profiles is 𝑋 = ∏ 𝑋𝑖𝑛
𝑖=1  . For 𝑖 ∈  𝑁, let 𝑋−𝑖  =

 ∏ 𝑋𝑘𝑘∈𝑁\{𝑖}  . Then, 𝑥 = {𝑥1 , 𝑥2 , . . . , 𝑥𝑛 } ∈  𝑋 can be rewritten as 𝑥 =  (𝑥𝑖 , 𝑥−𝑖 ) with 𝑥−𝑖  =

 (𝑥1 , . . . , 𝑥𝑖−1 , 𝑥𝑖+1, . . . , 𝑥𝑛)  ∈  𝑋−𝑖 .  

If 𝑥 ∈  𝑋 is played, then the probability that a pure strategy profile 𝑠 =  (𝑠 𝑗1
1  , 𝑠 𝑗2

2  , . . . , , 𝑠 𝑗𝑛
𝑛 )  ∈  𝑆 occurs is 

∏ 𝑥𝑗
𝑖𝑛

𝑖=1  .  

Therefore, for 𝑥 ∈  𝑋, the expected payoff of player 𝑖 is given by 𝑢𝑖 (𝑥) =  Σ 𝑠∈𝑆 𝑢
 𝑖 (𝑠)∏ 𝑥𝑗𝑖

𝑖𝑛
 𝑖=1 .  
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With these notations, a finite 𝑛 −person game in normal form can be represented as 𝛤 =

(𝑁, 𝑆, {𝑢𝑖}
𝑖∈𝑁
)  𝑜𝑟 𝛤 =  (𝑁, 𝑋, {𝑢𝑖}

𝑖∈𝑁
).  

Definition 1: (Nash, [1]) A mixed strategy profile 𝑥∗  ∈  𝑋 is a Nash equilibrium of game 𝛤 if 𝑢𝑖 (𝑥∗ )  ≥

 𝑢𝑖 (𝑥𝑖 , 𝑥∗−𝑖 ) for all 𝑖 ∈  𝑁 and 𝑥𝑖  ∈  𝑋𝑖 . With the application of optimality condition, one can obtain that 𝑥∗ 

is a Nash equilibrium if and only if there are 𝜆∗ and µ∗ together with 𝑥∗  satisfying the system of (1) 

  

(

 
 
 

𝑢𝑖 (𝑠𝑗
𝑖 , 𝑥−𝑖 )  + 𝜆𝑗

𝑖  −  µ
𝑖
 =  0,

 𝑒𝑖⊺ > 𝑥𝑖 –  1 =  0,

𝑥𝑗
𝑖𝜆𝑗
𝑖  =  0,

 𝑥𝑗
𝑖  ≥  0, 𝜆𝑗

𝑖  ≥  0

𝑗 = {1, 2, . . . , 𝑚𝑖} , 𝑖 = { 1, 2, . . . , 𝑛, })

 
 
 

        (1) 

where 𝑒𝑖  =  (1, 1, . . . , 1)⊺ > ∈  𝑅𝑚𝑖 .  

Let 𝛽 be a given positive number such that 

 𝛽 ≥ max
𝑖∈𝑁 

{max
 𝑠∈𝑆

𝑢𝑖 (𝑠) –min
 𝑠∈𝑆

𝑢 𝑖  (𝑠) } . 

Then, (1) is equivalent to (2).  

 

(

 
 
 
 
 
 

𝑢𝑖 (𝑠 𝑗
 𝑖  , 𝑥−𝑖 )  + 𝜆 𝑗

 𝑖  −  µ
𝑖
 =  0,

𝑒𝑖⊺  > 𝑥  𝑖  −  1 =  0
𝑥 𝑗
 𝑖  ≤  𝑣 𝑗

 𝑖

𝜆 𝑗
 𝑖  ≤  𝛽(1 – 𝑣 𝑗

 𝑖 )

𝑣 𝑗
 𝑖  ∈  {0, 1}

𝑥 𝑗
 𝑖  ≥  0, 𝜆 𝑗

𝑖  ≥  0

𝑗 = {1, 2, . . . , 𝑚𝑖 }, 𝑖 = {1, 2, . . . , 𝑛. })

 
 
 
 
 
 

         (2)  

 Thus, finding a pure-strategy Nash equilibrium is equivalent to computing a solution of the system of (3).  

 

(

 
 
 
 
 

𝑢 𝑖 (𝑠 𝑗
 𝑖  , 𝑥−𝑖 ) + 𝜆 𝑗

 𝑖  − µ
𝑖
 =  0

𝑒  𝑖⊺ > 𝑥𝑖  −  1 =  0
𝑥 𝑗
𝑖  ≤  𝑣 𝑗

𝑖

𝜆 𝑗
 𝑖  ≤  𝛽(1 − 𝑣 𝑗

𝑖  )

𝑥 𝑗
 𝑖  ∈  {0, 1}, 𝑣 𝑗

𝑖  ∈  {0, 1}, 𝜆 𝑗
 𝑖  ≥  0

𝑗 = { 1, 2, . . . , 𝑚𝑖} , 𝑖 = {1, 2, . . . , 𝑛})

 
 
 
 
 

         (3)   

where 𝑢𝑖 (𝑠𝑗
 𝑖 , 𝑥−𝑖 )  =  Σ 𝑠−𝑖∈𝑆−𝑖 𝑢

 𝑖 (𝑠 𝑗
 𝑖 , 𝑠−𝑖 )  ∏ 𝑥 𝑗𝑘

 𝑘
 𝑘≠𝑖   . 

 One can find a pure strategy Nash equilibrium through solving the system (3). However, it is difficult to solve 

the system (3) directly because of the multilinear terms. To address this issue, Wu [19], [20] developed a 

method which can convert the system (3) to an equivalent mixed 0-1 linear formulation. This method is based 

on exploiting the properties of pure strategy and multilinear terms in the payoff functions.  
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Let 𝑦(𝑠−𝑖  ) =  ∏ 𝑥 𝑗𝑘
 𝑘

 𝑘≠𝑖   for 𝑠  –𝑖  =  (𝑠 𝑗1
 1  , . . . , 𝑠𝑗𝑖−1 

𝑖−1 , 𝑠𝑗𝑖+1 
𝑖+1 , . . . , 𝑠 𝑗𝑛

𝑛 )   ∈  𝑆 − 𝑖 .  

Then, 

 𝑢𝑖 (𝑠 𝑗
 𝑖  , 𝑥−𝑖 )  =  Σ 𝑠−𝑖∈𝑆−𝑖 𝑢

 𝑖 (𝑠 𝑗
 𝑖  , 𝑠−𝑖)𝑦(𝑠  –𝑖 ).  

And the mixed 0 − 1 linear program obtained is shown in (4) as follows: 

 

(

 
 
 
 
 
 
 

Σ 𝑠−𝑖∈𝑆−𝑖 𝑢
 𝑖(𝑠 𝑗

 𝑖  , 𝑠−𝑖 )𝑦(𝑠  –𝑖 ) +  𝜆 𝑗
 𝑖  − µ

𝑖
 =  0

 𝑒  𝑖⊺ > 𝑥  𝑖 −  1 =  0
𝜆 𝑗
 𝑖  ≤  𝛽(1 − 𝑥 𝑗

 𝑖  )

𝑥 𝑗
 𝑖  ∈  {0, 1}, 𝜆 𝑗

 𝑖  ≥  0

𝑗 = {1, 2, . . . , 𝑚𝑖}, 𝑖 = {1, 2, . . . , 𝑛}

𝑦(𝑠  –𝑖 ) ≥  Σ ℎ≠𝑖 𝑥 𝑗ℎ
 ℎ  −  (𝑛 –  2)

𝑦(𝑠−𝑖  ) ≤  𝑥𝑗𝑘
𝑘  , 𝑘 ≠  𝑖

0 ≤  𝑦(𝑠  −𝑖 ), 𝑠  –𝑖  ∈  𝑆  –𝑖 , 𝑖 =  1, 2, . . . , 𝑛 )

 
 
 
 
 
 
 

    (4)  

The derivation process of the formulation and the detailed proofs can be obtained in the paper [19]. Therefore, 

we can solve the mixed 0 − 1 linear program (4) to get a Nash equilibrium in (1). The distributed Dang’s Fixed 

Point method which will be presented in the next sections plays well to the computation of this mixed 0-1 

linear program.  

DANG’S FIXED-POINT ITERATIVE ALGORITHM  

Let 𝑃 =  {𝑥 ∈  𝑅𝑛|𝐴𝑥 +  𝐺𝑤 ≤  𝑏, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑤 ∈  𝑅𝑝}, where 𝐴 ∈  𝑅𝑚×𝑛 is an 𝑚 ×  𝑛 integer matrix with 

𝑛 ≥  2, 𝐺 ∈  𝑅𝑚×𝑝 an 𝑚 ×  𝑝 matrix, and 𝑏 a vector of 𝑅𝑚.  

Let 𝑥𝑚𝑎𝑥  =  (𝑥1
𝑚𝑎𝑥 , 𝑥2

𝑚𝑎𝑥 , . . . , 𝑥𝑛
𝑚𝑎𝑥 )𝑇  with 𝑥𝑗

𝑚𝑎𝑥  = max
𝑥∈𝑃

𝑥𝑗   , 𝑗 =  1, 2, . . . , 𝑛 and 𝑥𝑚𝑖𝑛  =

 (𝑥1
𝑚𝑖𝑛 , 𝑥2

𝑚𝑖𝑛 , . . . , 𝑥𝑛
𝑚𝑖𝑛 )

𝑇
 with 𝑥𝑗

𝑚𝑖𝑛  = min
𝑥∈𝑃

𝑥𝑗   , 𝑗 =  1, 2, . . . , 𝑛.  

Let 𝐷(𝑃)  =  {𝑥 ∈  𝑍𝑛|𝑥𝑙  ≤  𝑥 ≤  𝑥𝑢}, where 𝑥𝑙  = [ 𝑥𝑚𝑖𝑛]𝑎𝑛𝑑 𝑥𝑢  = [𝑥𝑚𝑎𝑥]. For 𝑧 ∈  𝑅𝑛 𝑎𝑛𝑑 𝑘 ∈  𝑁0, let 

𝑃(𝑧, 𝑘)  =  {𝑥 ∈  𝑃|𝑥𝑖  =  𝑧𝑖 , 1 ≤  𝑖 ≤  𝑘, and 𝑥𝑖  ≤  𝑧𝑖 , 𝑘 +  1 ≤  𝑖 ≤  𝑛}.  

Given an integer point 𝑦 ∈  𝐷(𝑃) with 𝑦1 > 𝑥𝑖
𝑙 , Dang and Ye [21], [22] developed a iterative method which is 

presented in Fig.3. It determines whether there is an integer point 𝑥∗  ∈  𝑃 with 𝑥∗  ≤𝑙  𝑦.  

http://www.ijcrt.org/


www.ijcrt.org                                                                            © 2023 IJCRT | Volume 11, Issue 4 April 2023 | ISSN: 2320-2882 

IJCRT2304107 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a794 
 

 

An example given below is used to illustrate the method. Consider a polytope 𝑃 =  {𝑥 ∈  𝑅3 |𝐴𝑥 ≤  𝑏} with 

𝐴 = {

−1 0 2
0 −2 1
−1 0 −2
 1  1    0

} , 𝑏 = {

0
1
1
0

}  

It is easy to obtain 𝑥𝑢  =  (1, 0, 0)𝑇 and 𝑥𝑙  =  (−1,−2,−2)𝑇 . Let 𝑦 =  𝑥𝑢 , 𝑦0  =  𝑦, and 𝑘 =  3 −  1 =

 2. 𝑦1  =  (1,−1, 0) can be obtained in the first iteration, and 𝑦2  =  (1,−1,−1) which is an integer point in 𝑃 

is obtained in the second iteration. An illutration of 𝑦0 , 𝑦1 and 𝑦2 can be found in Fig.4.  
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The idea of Dang’s method [21], [22]𝑦 ∈  𝐷(𝑃)  to solve integer programming is to define an increasing-

mapping from a finite lattice into itself. All the integer points outside the P are mapped into the first point in 𝑃 

that is smaller than them in the lexicographical order of 𝑥𝑙 . All the integer points inside the polytope are the 

fixed points under this increasing mapping. Given an initial integer point, the method either yields an integer 

point in the polytope or proves no such point exists within a finite number of Figure 4. An illustration of the 

iterative method. iterations. For more details and proofs about this iterative method, one can consult Dang [21], 

[22].  

DISTRIBUTED IMPLEMENTATION  

As an appeal feature, Dang’s method can be easily implemented in a distributed way. Some distributed 

implementation techniques to Dang’s method will be discussed in this section. The simple distributed model as 

described in Fig.1 has been used in our implementation. There are one master computer and a certain number 

of slave computers in this distributed computing system. The master computer takes charge of computing the 

solution space of the polytope, dividing the solution space to segments, sending the segments to the slave 

computers, receiving the computation result from the slave computers and exporting the computation result. 

Each slave computer receives the segment, judges whether there exits an integer point in its segment using 

Dang’s Fixed-Point iterative method and sends its result to the master. The outline of the distributed 

computation process in this paper can be explained in the Fig.5.  
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All the programs are coded in C++, and run on Microsoft Windows platform. Two algorithms have been 

considered to the bounding linear program in Dang’s iterative method. One is the simplex algorithm [23] 

which is the most popular algorithm for linear programming. We can call the API function in CPLEX Concert 

Technology to carry out this method. The other algorithm is the self-dual embedding technique presented in 

[24]. This algorithm detects LP infeasibility based on a proved criterion, and it is the best method to solve the 

linear programming in Dang’s algorithm to our knowledge. The MPICH2, which is a freely available, portable 

implementation of Message Passing Interface(MPI), is used to send and receive message between the master 

computer and slave computers in this implementation. More information about the Message Passing Interface 

can be obtained in the literature [25]. It is important to assign equal amount of work to each slave computer. 

Two methods have been implemented for the assignment. One is to divide the interested space into a number 

of more or less equal regions. The other is to randomly divide the interested space into a number of regions 

according to the Latin Squares method in [26]. The first method has a good performance when the number of 

slave computers is small. When the number of slave computers increases big enough, the later method 

performs better. The slave computers may complete their work allocations at different times. So the interactive 

distributed model(in Fig.2), in which the slave computers could communicate with each other by message 

passing, is our next work. By doing so, a slave computer can help others if it completes its work earlier. This 

will be quite helpful to enhance efficiency of the method.  
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 NUMERICAL RESULTS  

In this section, some numerical results will be presented. The distributed computation network consists of 3 

computers of OptiPlex 330 with 2 processors. All programs are coded in C++, and CPLEX Convert 

Technology is used to solve the linear programming in the Fixed-Point algorithm in this distributed network. 

Each subsegment divided by the master computer is independent to each other. Therefore, each slave computer 

can conduct each subsegment simultaneously. Message Passing Interface (MPI) is used to establish a 

communication network between the master computer to the slave computers. And the master computer takes 

charge of outputting the computation result. In the presentation of numerical results, some symbols are 

explained as follows.  

N: The number of players in the instance.  

S: The number of strategies for each player in the instance. 

 Niteration: The number of iteration of the Fixed-Point algorithm.  

Result: “Yes” appears if the method finds a Nash equilibrium and “No” otherwise.  

Only three-player game needs to be considered since any n-player game can be reduced to a three-player game 

in polynomial time as shown in [27]. In this paper, the computation examples which are generated randomly 

are given as follows.  

Example 1: Consider a three-player game 𝛤 =  (𝑁, 𝑆, {𝑢𝑖}
𝑖∈𝑁
  ), where 𝑁 =  {1, 2, 3}. The number of 

strategies for each player, Num 𝑆, is generated from 2 to 15 randomly. The {𝑢𝑖 }
𝑖∈𝑁

 are generated randomly 

too. There are four different ranges for {𝑢𝑖}
𝑖∈𝑁

 in this example, which are from 0 to 1, from 0 to 10, from 0 to 

50, and from 0 to 100. Let β = 1000. For different range of {𝑢𝑖}
𝑖∈𝑁

 , 80 instances have been solved by this 

distributed computation network. Numerical results of this distributed computation network are given in Table 

I, Table II Table III and Table IV respectively.  

Table I presents the numerical results when the payoff function 𝑢𝑖 (𝑠𝑗
𝑖 , 𝑠−𝑖 ) is generated from 0 to 1 

randomly.  
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Pro N S Niteration Result 

1 3 2 23 Yes 

2 3 3 44 Yes 

3 3 3 44 Yes 

4 3 4 98 Yes 

5 3 4 71 Yes 

6 3 4 70 Yes 

7 3 5 104 Yes 

8 3 7 188 Yes 

9 3 9 433 Yes 

10 3 9 296 Yes 

11 3 9 296 Yes 

12 3 10 470 Yes 

13 3 10 491 Yes 

14 3 10 360 Yes 

15 3 11 429 Yes 

16 3 12 697 Yes 

17 3 13 781 Yes 

18 3 15 765 Yes 

19 3 15 1019 Yes 

20 3 15 770 Yes 

Table II gives the numerical results when the payoff function 𝑢𝑖 (𝑠 𝑗
 𝑖 , 𝑠−𝑖   ) is generated from 0 to 10 

randomly.  

Pro.  N  S  Niteration  Result 

1  3  2  25  No 

2  3  2  15  Yes 

3  3  2  22  Yes 

4  3  3  51  Yes 

5  3  3  44  Yes 

6  3  4  80  Yes 

7  3 4  80  Yes 

8  3  5  124  Yes 

9  3  6  166  Yes 

10  3  7  203  Yes 

11  3  8 243  No 

12  3  8  274  Yes 

13  3  8  276  Yes 

14  3  9  303  Yes 

15  3  11  435  Yes 

16  3  11  446  Yes 

17  3  12 519  Yes 

18  3  13  625  Yes 
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19  3  14  688  Yes 

20  3  15  779  Yes 

 

For the payoff function 𝑢𝑖 (𝑠 𝑗
 𝑖  , 𝑠−𝑖   ) is generated from 0 to 50 randomly, the numerical results are shown in 

Table III.  

Pro . N  S  Niteration  Result 

1  3  2  21  Yes 

2  3  4  74  Yes 

3  3  4  76  Yes 

4  3  4  73  No 

5  3  5  110  Yes 

6  3  6  179  Yes 

7  3  7  199  Yes 

8  3  8  244  Yes 

9  3  9  300  Yes 

10  3  10  424  Yes 

11  3  10  364  Yes 

12  3  11  496  Yes 

13  3  12 508  No 

14  3  13  589  Yes 

15  3  13  609  Yes 

16  3  13  591  Yes 

17  3  13  597  Yes 

18  3  14  678  Yes 

19  3  14  757  Yes 

20  3  15  779  Yes 
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 Table IV is for the range of 0 to 100.  

Pro.  N  S  Niteration  Result 

1  3  2  22  Yes 

2  3  3  52  Yes 

3  3  3  38  Yes 

4 3  4  74  Yes 

5  3  4  72  Yes 

6  3  5  102  Yes 

7  3  6  152  Yes 

8  3  6  153  Yes 

9  3  7 191  No 

10  3  7  191  Yes 

11  3  9  300  No 

12  3  9  302  No 

13  3  11  432  Yes 

14  3  11  434  Yes 

15  3  12  516  Yes 

16  3  13  692  Yes 

17  3  13  655  Yes 

18  3  14  677  Yes 

19  3  14  675  Yes 

20  3  15  770  Yes 

 

With compare of the numerical results generated by Fixed-Point method in the paper [20], one can see that the 

distributed network could obtain the same computation results for the same example. The comparison of the 

computation time has no meaning since two methods are run on different computers. Limited by the number of 

computers in experiment, dimension in examples above is relatively small. However, with hundreds or 

thousands computers one can image that large dimension problem can be solved easily by this distributed 

computation network. There are two problems have to be settled for the improvement of this network. One is 

the solver of linear programming. The advanced self-dual embedding technique presented in [24] has to take 

the place of CPLEX Concert Technology for solving linear programming. The other one is to upgrade the 

simple distributed model to the interactive distributed model. With these two problems solved, the performance 
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