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Abstract

In this paper, we consider extended Nash equilibriums of nonmonetized noncooperative games. By
using a modified fixed point theorem of set-valued mappings on partially ordered sets, we prove
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1. Introduction

The existence of generalized Nash equilibriums has become the focus of research in NNGs. For
instance, in [3, 8] the authors proved the existence via different fixed point theorems on Banach
lattices. Since a Banach lattice is equipped with some metric topology and algebraic structures, the
proofs of the existence follow the same idea as the traditional games, applying fixed point theorems
in topological vector spaces. To avoid this, very recently, in [9] the authors obtained the existence
results on lattices, which are equipped with neither a topological structure nor an algebraic structure,
but only with a special partial order, i.e., a lattice order. Moreover, in [10] the authors extended
the concept of generalized Nash equilibrium to extended Nash equilibrium and proved an existence
theorem of extended Nash equilibriums of the NNG by applying a fixed point theorem on posets.
Motivated by the works mentioned above, in this paper we also consider extended Nash equilibriums
of the NNG and establish an existence result due to an improved fixed point theorem corresponding
to [3] for set-valued mappings on posets without the consideration of a topological structure nor an
algebraic structure. We relax the assumptions of the order compactness and the chain-completeness
and hence our result compares favorably with that of [10]. Finally, we will give an example to show

the advantages of our results.

*Corresponding author (dranimeshguptal0@gmail.com)
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2. Preliminaries

In this section, we recall briefly some definitions and properties of posets. For more details, we refer
to [3,7-10] and [1,2,4]. Let P = (P, <) be a poset with the partial order <. An element (1,v) € P x P
is called an upper bound of a subset A x A of P x P if (x,y) < (u,v) for each (x,y) € Ax A. If
(u,v) € A x A, we say that (u,v) is the greatest element of A x A and denote (1,v) = max(A x A).
The supremum of A, denoted by sup(A x A), is an element (ug, vg) which is an upper bound of A x A
and (ug,v9) =< (u,v) as long as (u,v) is another upper bound of A x A. It is clear that max(A x A) =
sup(A x A) if they exist. The maximal element of A x A is an element (x,y) € A x A which satisfies
(x,y) = (r,s) whenever (r,s) € A x A and (x,y) < (,s). Obviously, if (u,v) € A x A is an upper
bound of A x A, then (u#,v) is a maximal element of A x A. The lower bound, the smallest element
(min(A x A)), the infimum (inf(A x A)), and the minimal element of A x A can be similarly defined.
A subset A x A is called a chain if any two elements of A x A are comparable, i.e., (x,y) < (u,0)
or (u,v) = (x,y) for all (x,y), (u,v) € A x A. A is said to be a countable chain if A x A is a chain
and is countable. By c.c. we denote a countable chain. For given posets (X, <X) and (U, x%*Y), a
single-valued mapping F from (X, <¥) into (U, <Y) is said to be order increasing if F(x,y) <" F(u,v)
whenever (x,y) <X (u,0).

In the following definition, we require some weaker conditions compared with Definitions 2.1 and 2.2

of [10].
Definition 2.1. A poset (P, <) is said to be

(i) inductive if every c.c. C x C C P x P has an upper bound in P x P and strongly inductive if sup(C x C)
exists in P x P for every c.c. Cx C C P x P;

(ii) inversely inductive if every c.c. in P X P has a lower bound in P x P and strongly inversely inductive

whenever every c.c. C x C C P x P has the infimum in P x P;

(iii) bi-inductive whenever it is both inductive and inversely inductive and strongly bi-inductive whenever it is

both strongly inductive and strongly inversely inductive.
Lemma 2.2. If P is a bi-inductive poset, then every subset A x A C P x P is also a bi-inductive poset.

The following fixed point theorem on posets, which improves the corresponding result of [3], will play

an essential role in our main results.

Theorem 2.3. Let (X, =) be a poset. For a given nonempty subset P of X and a set-valued function F :

X x X — 21X%X| we assume that

(HO) there exist  (uo,v0),(70,50) € P x P with (ug,vp) =< (ro,so) such  that

F[X X X] = U(x,y)eXxXF(x/y) - [”0/ UO]}
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(H1) if (p,q) € P x P, then min F(p, q) and max F(p, q) exist and belong to P x P. Moreover, min F(p, q)
is a lower bound of F[X x X N [p,q] % [p,q]] and max F(p, q) is an upper bound of F|X x X N [p,q] X

[p.qll;

(H2) the set {maxF(p,q) : (p,q) € P x P} is a strongly inversely inductive subset of X x X and the set
{minF(p,q) : (p,q) € P x P} is a strongly inductive subset of X x X.

Then F has the greatest fixed point (u*,v*) and the smallest fixed point (u,,v.) in P x P, that is, (u*,v*) =
max.Z (X x X) and (u,v) = min # (X x X), where # (X x X) = {(x,y) € X x X : (x,y) € F(x,y)}.

Proof. Let G(p,q) = minF(p,q) for each (p,q) € P x P. By virtue of (H1), G is well defined and an
increasing mapping from P x P into itself. From (H2) it follows that every c.c. of G[P x P] has a
supremum in P X P. Moreover, (19,v9) < G(up, vo) with (u9,vo) given in (HO). Hence, G|[uo, v9)] C
[0, v9) by the fact that G is increasing.

In what follows, we prove that G has a fixed point in [ug,vg). Let u;11 = G(u;,v;) fori =0,1,....
Then {u;} is a c.c. Similarly, let v;;1 = G(v;,u;) fori = 0,1,.... Then {v;} is a c.c and hence has a
supremum by (H2). In addition, x < G(x,y) and y = G(y,x) for any x € {u;} and y € {v;}. Let
(g, vp) = sup{(u;,v;)} and Pr x Pr = {(u;,01) }2o U {(up, 05)}- If ug = G(ug, v5), and vy = G(vg, up),
then G has a fixed point. Otherwise, take u} ; = G(u},v}) and v} ; = G(v},u}) fori =0,1,.

Again, the set of pair {(u},v}), (ui,0}), } has the supremum (u3,v3) = sup(u},v}) by (H2). Denote
Prx Py = {{(u},0}), (ui,0}),...} U{(ud,v3)}. If ud = G(u3,v3), then G has a fixed point. Otherwise,
repeating this process, either G has a fixed point, or we can obtain a set sequence (P; x P1), (P2 X

P,),... satisfying

() Pex Pr = {(ub o8, b1, 051, L3 U {(ufof)} with (uf, of) = sup{(u¥1, 05 1)} and uf =
G(uk |, of |)and of = G(uf_ |, ok |) forik=1,2,..;

_1ju§‘,;‘ < ufand u = u; fori,k=1,2,...and j,t =0,1,....

Let Q = U1 (P, Pr)- Then, like the proof of Lemma 2.5 in [6], we can verify that Q is a c.c., G(Q) C
Q CPxPandx = G(x,x) for all (x,x) € Q. (H2) shows that G has the greatest element (u,,u,) =
max Q. From G(Q) C Q it follows that G(u, 1) < (us,u.), while u, € Q implies u, < G(u, 1y).

Consequently, (u.,u,) is a fixed point of G in [u, ug) satisfying
u, =max Q = sup G(Q) = min{u € [up) : G(u) < u},

where the last equation is an immediate consequence of Proposition 2.14 in [3].

Now we prove that (u.,u.) is a lower bound of .# (X x X). Suppose that this is not true. Then
there exists a point (x,y) € Z(Xx) such that (u,,u.) £ (x,x). Note that (x,x) € F(x,x), we have
min Q = (ug, up) = (x,x) by (HO). On the other hand, for any (y,y) € Q and (y,y) = (x, x), in view of
the condition (H1) and the definition of G we see that G(y, y) is a lower bound of F(x, x). This implies
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that G(y,y) < (x, x). Now the composition of Q, combining with 1y € Q, guarantees that u, < (x,x),
which contradicts the choice of x. Consequently, u, is a lower bound of .7 (X x X).

Finally, we observe that (i, u+) = G(u, u,) = min F(uy, uy) € F(us, u,), which implies that (1., u,) €
Z (X x X) and hence (u,, u,) = min.Z (X x X). Moreover, (u,u,) = min F(u,,u,) € P x P by (HI).
Similar to the above discussion, we can prove the existence of the greatest fixed point (u*, u*) of F.

This proof is complete. O

3. Main Results

Definition 3.1. [10]

Let n be a positive integer greater than 1. An n—person NNG consists of the following elements:
(1) the set of n players, which is denoted by N = {1,2,...,n};

(2) the collection of n strategy sets S = {S1,Sa,...,S,}, where S; stands for the strategy set of player i for

i € N, which is also written as S = S1 X Sp X -+ - X Sy;

(3) the set of n payoff functions P = {Py, Py, ..., P}, whereP;, a mapping from S X Sy X --- X Sy into the
poset (U, =Y), is the payoff function of player i for i € N;

(4) the outcome space (U, =), which is a poset. This game is denoted by T = {N, S, P, U}.

In an n— person NNG I' = {N,S,P,U}, when all the players simultaneously and independently
choose their own strategies x1, xp, ..., x,; to play, where x; € S; for i € N, then the player i will receive
his payoff P;(x1,x2,...,x,) € U. For every given i € N and any x = (x1,X2,...,X,) € S, we adopt the

following notations for convenience:

—i=N\{i}, i=1,23,...,n,
x*l' - (x1/x21-~'1xi711xi+11"'1x1’l)/ (1)

S ;=85 XSy X+ X8§_1X5j41X---XS5y.

Then x_; € S_;, and we can simply write x as x = (x;, x_;). Moreover, we define
Pi(Si, x_;) = {Pi(t;,x_;) : t; € S;}.
Definition 3.2. [10] In an n— person NNG T = {N, S, P, U}, a selection of strategies
X=(%,%,...,%) €ES1 XS X+ %8y
is called an extended Nash equilibrium of this game if the order relation

Pi(firf—i) 7éu Pl'(xirf—i)l vxi € Si/
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holds for every i € N.

Lemma 3.3. [10] Let (S;, <;) be a poset for every i € N. Let S = S1 X Sy X - - - X S, be the Cartesian product
space of S1,S2,..., Sy, and let =S be the coordinate partial order on S induced by the partial order =, that is,

forany x,y € S with x = (x1,x2,...,%,) and y = (Y1, Y2, .., Yn), we have

x =%y ifandonlyif x; =;y;, Vi€ N and @
2
x <%y ifandonly if x; =;y;and x;, # vy, for some iy € N.

Then (S, =5) is a poset. Furthermore, if every (S;, =;) is (strongly) inductive, then (S, =%) is also (strongly)

inductive. If every (S;, =;) is (strongly) bi-inductive, then (S, <) is also (strongly) bi-inductive.

Let # = {A: A C Sisac.c.}. We introduce a partial order on & as follows: A < B if and only if
ACBand A < Bifand onlyif A < Bbut A # Bforall A,B € Z.

Lemma 3.4. (£, <) has a maximal element and a minimal element.

Proof. On the contrary, suppose that, for each A € &, there exists at least an element B € & such
that A < B. Let f(A) = B. Then f is a mapping from & into itself and satisfies A < f(A) for each
A € P. We assert that every countable chain of & has a supremum in Z. In fact, if ¢ = {A1, Ay, ...}
is a countable chain of &, then Ay is a countable subset of S for k = 1,2,.... Let A = Ui, A. It is
easy to see that A belongs to & and is a supremum of €. In the light of Lemma 2.5 in [11], f has a
fixed point Ag = f(Ap) € Z. On the other hand, from the definition of f we have Ay < f(Ap). This
is a contradiction. Therefore, &7 has a maximal element. Analogously, we can prove the existence of a

minimal element. This proof is complete. O

In this sequel, the maximal element (resp. minimal element) of % is said to be a maximal c.c. (resp.

minimal c.c.) of S.

Lemma 3.5. If S is inductive (inversely inductive), then S has a maximal element s° (minimal element so).
Moreover, sup P* exists and equals s°(inf P, exists and equals so) where P*(P,) is a maximal c.c. (minimal

c.c.) of S.

Proof. Lemma 3.4 guarantees the existence of the maximal c.c. P* of S and the inductive hypothesis
further guarantees the existence of the upper bound s’ of P*. We first check that s is a maximal
element of S. To this end, we choose an element x € S with s® < Sx. If x ¢ P*, then B = P* U {x} is
alsoac.c, ie, B € &. Obviously, P* < B, which is a contradiction since P* is the maximal element of
2. Consequently, x € P*. Since s is the upper bound of P*, we have x < °s°. Hence x = s° and this
implies that s is a maximal element of S. Note that s € P*, we see that s is the supremum of P*.

The proof for the existence of a minimal element of S is analogous. This proof is complete. O

We are in a position to state and prove the main result of this paper.
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Theorem 3.6. Let I’ = {N, S, P, U} be an n-person NNG. If the following conditions hold:
(I) every player’s strategy set (S;, =;)(i € N) is a strongly inductive and inversely inductive poset,

(1) every player’s payoff function P; : S x S — U(i € N) satisfies
Pi(x,x) <Y Pi(y,y) ifandonlyif x =5y foranyx,y € Sandic N,

then the game I' has an extended Nash equilibrium. Furthermore, I has minimal and maximal extended Nash

equilibriums.

Proof. Lemma 3.4 guarantees that S has at least a maximal c.c. P. Let P = {(&1,¢1),(¢2,82),.--},
where & = {(x5,x5), (x,x5),..., (x5, %))} and & = {(+], %)), (x},x}), ..., (x}, x}))} are comparable
with respect to <5 for k,j=12,...

For any fixed i € N, let S x S? = {(xk, %)} ,. Then S¥ x S¥ C S; x S; and S is obviously a c.c. of S;
for i € N. Hence there exist an upper bound §; and a lower bound ; of S? since S; is bi-inductive for
i € N. We will verify that S? is a maximal c.c. of S; for i € N. Suppose that this is not true. There exists
some ig € N such that S% is not a maximal c.c. of S;, i.e., there exists another c.c. A;, of S; such that
S% C A, and hence there exists a with a,b € A;  and a ¢ S%. We have three cases:

Case 1. (a,a) <, (xﬁ),xﬁ)) forallk=1,2,...;

Case 2. (xﬁ),xﬁ)) <i, (a,a) forallk =1,2,..;

Case 3. there exists a positive integer k; such that

ki+1 xk1+1).

(xk xi‘o) =i (a,a) =iy ()7, %]

107/

In case 1, let 7 = (y',y?,...,y") with y' = F if i # ig and y°* = a. Then y ¢ P and n <° & for
k=1,2,.... Thus {y}UP isacc of Sand PxP C {5 xy}UP x P, which contradicts the
maximality of P.

Assume that case 2 occurs. We take i’ = §; instead of y' = F; if i # iy and ¥ = a for every component

y' of 7 given in case 1. Thus we have that
NEP &= PxPC{ynpUPxP  and  {gxy}UPxP

is a c.c. of 5, which contradicts the maximality of P again.
If case 3 occurs, then, for 7 given in case 1, instead of y' = ;, we choose i’ = xi.‘l for i # iy and y = a.
Hence

S S
gk] < 17 = gkr‘rl'

It is similarly able to get a contradiction. Consequently, SY is a maximal c.c. of S; fori € N.
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From Lemma 3.5 it follows that the supremum s? and the infimum sy; of S? exist for i € N. We next
claim that s? = max S? and sp; = min S?. In fact, if s? # max S?, then sz-O ¢ S? and S? - S? U {s?} isa c.c.
of S;, which contradicts the maximality of SV.

g’,sg,...,sg) and &o := (So1,S02, - - -,S0n ). It is clear

Analogously, we can prove s;; = min S?. Let ¢° := (s
that ¢%, &y € P. This further implies that ¢ = maxP and & = min P. In addition, it is easy to see
that, for any x_; € S_;, P;(s?,x_;) (resp. Pi(so;, x_;) ) is a maximal element (resp. minimal element) of
P;(S;, x_;) with respect to the partial order <u

For every fixed i € N, we define a set-valued mapping T; : S x S — 2/5*5%\ {@} by
Ti(x,x) = {z; € S; N [s0;,57] : Pi(z;, x_;) is a maximal element of P;(S;, x_;) }

for all x = (x1,x2,...,%,) € S. We have revealed s? € T;(x), which illustrates that T;(x) is nonempty
for every x € S. Apparently, min T;(x, x) and max T;(x, x) exist in [sp;, s’] for every x € S, moreover,
max T;(x,x) = sV. Let us define the set-valued mapping T : S x S — 2/5*5\ {&} as follows: for any

x €S
T(x,x) ={y= (1, y2 -, yn) 1 yi € Ti(x,x),i € N}

and where y; = (y,y). From the definition of T, it follows that max T(x,x) = ¢° and min T(x, x) =
(min Ty (x, x), min T(x, x), ..., min T, (x, x)) for every x € S. This implies that T(S x S) C [&o,&°] and
hence T satisfies the hypothesis (H0) of Theorem 2.3.

For any ¢, = (x’l‘,xlé,...,xﬁ) € P, we observe that maxT(&, &) = &0 = (s?,sg,...,sg) and
minT (8, Ck) = (21,25,...,2;) with zi = minT;(l, C)(i € N). Let 2/ = (2],25,...,2,). Then
minT(, ¢x) = 2. Taking any x” € SN (& and z! € Ti(x",x") for i € N, we have
z!' <; 8% = max T;(E, &), i.e, max T;(E, &) is an upper bound of T;(x”,x"). The arbitrariness of x”
induces that max T;(&, k) is also an upper bound of T;[S x S N ({k, &x]] and the arbitrariness of i € N
induces that max T(¢x) is an upper bound of T[S N (&]]. Similarly, taking any y” € SN [{}), by the

condition (II), we get

Pi(zl, x*;) =Y Pzl y") =Y Py,

which implies that min T;(¢x) = z =; z/'.
Hence min T;(&, ¢x) is a lower bound of T;(y”,y"). The arbitrariness of iy’ guarantees that min T; (&, Cx)
is a lower bound of T;[S x SN [&k),Ck)] and the arbitrariness of i € N reduces that min T(y, {x) is a
lower bound of T[S x S N [k, &)] once more. Consequently, T satisfies (H1) of Theorem 2.3.

Note that {max T (&, &) : & € P} = {&°}, Obviously, it is a strongly inversely inductive subset of S.
Since §; is a strongly inductive poset, Lemma 3.3 induces that S is also a strongly inductive poset. In

the light of Lemma 2.2, the set {min T(¢x): §x € P} C S is a strongly inductive subset of S. Therefore,

T satisfies (H2) of Theorem 2.3. As a conclusion of Theorem 2.3, T has the greatest fixed point x* and



Existence and Generalization of Extended Nash Equilibriums of ... / Soniya Patel and R. S. Patel 17

the smallest fixed point x, € P.
Suppose that ¥ is a fixed point of T, that is, (%;,%;) € T;(X, %), which yields, for every fixed i €

N, Pi(X;, %_;) is a maximal element of P;(S;, ¥_;). It is equivalent to
Pi(x;, %) AU Pi(t, %), VHES;

for every i € N, which indicates that ¥ = (&1, X2, ...,%,) is an extended Nash equilibrium. Moreover,
from Lemma 3.5, we see that x* is a maximal extended Nash equilibrium and x, is a minimal extended

Nash equilibrium of this game. This completes the proof of the theorem. O

Corollary 3.7. Under the condition (II) of Theorem 3.6, if every player’s strateQy set (S;, =;) is a strongly
inductive poset for i € N and his payoff function P; furthermore satisfies

(IT) for any fixed i € N and x_; € S_;, P;(S;, x_;) is an inversely inductive poset in (U, =),

then the game I' has an extended Nash equilibrium. Furthermore, I has minimal and maximal extended Nash

equilibriums.

Proof. In order to check that all conditions of Theorem 3.6 are satisfied, it suffices to check that S; is
inversely inductive for each i € N. Let C = {x,};>; be an arbitrary c.c. of S;. Then, for fixed x_; € S_,
by the condition (II) P;(C, x_;) is also a c.c. of P;i(S;, x_;). By means of (Ill), there exists y € P;(S;, x_;)
such that y <Y P;(x;, x_;) for each k = 1,2,.... We can choose x € S; such that y = P;(x,x_;). By means
of the condition (II), we have x <; x; for k =1,2,..., that is, x is a lower bound of C. Consequently, S;

is inversely inductive. Now Theorem 3.6 guarantees the desired results. O

Remark 3.8. In addition to (II), all the rest of the hypotheses in Corollary 3.7, respectively, correspond to the
conditions (i) and (2) in [10], Theorem 3.4. However, we not only use the weaker inductive poset concept but

also reduce some tedious hypotheses.

4. Example

The purpose of this section is to show the advantages of our results by the following example.

Example 4.1. (Military manufacture example) Suppose that a war is kindling between two countries C1 and
C2. To strengthen the combat effectiveness, they both intend to invest funds to acquire more weapons. Suppose
that there are two military factories F1 and F2 offering the weapons to the two countries C1 and C2, respectively.
As there is shortage of funds, each country can only invest 80 million Rupees into its military factory. Suppose
that the two factories just produce two weapons of the same type, tankers and fighter planes. The manufacturing
cost of a tanker is 20 million Rupees and a fighter plane will cost 30 million Rupees. Suppose that the incomes
are determined by the number of the two weapons that the factory can make. An arbitrarily considered outcome
is a set of the total combat effectiveness of a factory. Let U be the collection of all possible outcomes. Assume that

the combat effectiveness of a tanker and a fighter plane is incomparable. It is obvious that (U, <") is a poset.
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From what has been described above, we easily get the feasible strategy set of Fi as
Si = {Al = (4/0)1A2 = (3/0)1A3 = (2/1)1A4 = <1/2)1A5 = (012)}1

where the first and second components of Ay with k € {1,2,...,5} denote the number of tankers and the
number of fighter planes produced by Fi, respectively. Let P; : S — U be the payoff function of Fi, where, for any
x € S, P;(x) denotes the total combat effectiveness of the weapons produced by Fi. We are now in the position to

find an extended Nash equilibrium of this NNG.

Proof. For any Ay, A; € SjwithAx = (a1,a2) and Ay = (b, b2), we define the partial order <; on S; as
follows:

Ay =i Ay ifand only if a; <b;, foranyk,te {1,2,...,5}andi € {1,2}.

Obviously, (S;, <) is a poset. Let S = S; X Sp. For any x,y € S with x = (A, A¢) and y =
(Am, An), k, t,m,n € {1,2,...,5}, the partial order <5 on S is induced by the partial order =; as

follows:
x <5 y ifand only if Ay <1 Ay and Ay < A,, foranyk,t,m,ne {1,2,...,5}.

Then (S,<%) is a poset.

It is obvious that the strategy set (S;, <;) is a strongly inductive and inversely inductive poset. Therefore
the condition (I) of Theorem 3.6 is satisfied. For any two strategies x = (x1,x2),y = (y1,y2) € S with
x <5 y, we have x; =; y; for each i € {1,2}, which means that for each factory, both the number of
tankers and the number of fighter planes produced in x are less than that in y. Hence, the total combat
effectiveness of the weapons in x is weaker than that in y for each factory, that is, P;(x) <Y Pi(y)
for i € {1,2}. Then the sufficiency of (II) in Theorem 3.6 is satisfied. We now show that the game
also meets the necessity of (II). For any given P;(x), P;(y) € U with P;(x) =" Pi(y),i € {1,2}, we are
in the position to prove that x <° y. If x and y are incomparable, then the numbers of tankers and
fighter planes in x will not simultaneously be less or more than that in y. This implies that neither
Pi(x) =% Pi(y) nor P;(y) =" P;(x) since the combat effectiveness of a tanker and a fighter plane
is incomparable. Therefore, x and y are comparable by hypothesis P;(x) <" P;(y), that is, x <° y or
y =% x. By the sufficiency of (Il), if y <5 x, then P;(y) <" P;(x), which is a contradiction. Consequently,
x =% y. By virtue of Theorem 3.6, the game has maximal and minimal extended Nash equilibriums. In
fact, it easily checks that the strategy (A1, A1) € S is not only a maximal extended Nash equilibrium

but also a minimal extended Nash equilibrium of this game. O

Remark 4.2. It is easy to see that (S;, =;) in Example 4.1 has neither a sup-center nor an inf-center, which

indicates that Theorem 3.4 of [10] cannot solve the problem above. Hence our theorem compares favorably with

that of [10] in its particular way.
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